scholarly journals Changes in Cellular Ribonucleic Acid during Growth of Vesicular Stomatitis Virus in Chick Cell Culture

1959 ◽  
Vol 21 (3) ◽  
pp. 510-518 ◽  
Author(s):  
G. TURCO
2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Veronica L. Fowler ◽  
David J. King ◽  
Emma L. A. Howson ◽  
Mikidache Madi ◽  
Steven J. Pauszek ◽  
...  

We report nine full-genome sequences of vesicular stomatitis virus obtained by Illumina next-generation sequencing of RNA, isolated from either cattle epithelial suspensions or cell culture supernatants. Seven of these viral genomes belonged to the New Jersey serotype/species (clade III), while two isolates belonged to the Indiana serotype/species.


2021 ◽  
Author(s):  
Mijia Lu ◽  
Yuexiu Zhang ◽  
Piyush Dravid ◽  
Anzhong Li ◽  
Cong Zeng ◽  
...  

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to the uncertainties of the current approved vaccines such as durability of protection, cross-protection against variant strains, and costs of long-term production, and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S), S1, or its receptor binding domain (RBD). All these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2 specific neutralizing antibodies (NAbs) and Th1-biased T cell immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2 specific NAbs that were higher than convalescent plasma from convalescent COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. Significance Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is a novel target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2 specific neutralizing antibody (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2 specific NAbs that were higher than convalescent plasma from COVID-19 recovered patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


1972 ◽  
Vol 9 (4) ◽  
pp. 672-683 ◽  
Author(s):  
Robert R. Wagner ◽  
Michael P. Kiley ◽  
Ruth M. Snyder ◽  
Carl A. Schnaitman

2006 ◽  
Vol 81 (4) ◽  
pp. 2056-2064 ◽  
Author(s):  
David K. Clarke ◽  
Farooq Nasar ◽  
Margaret Lee ◽  
J. Erik Johnson ◽  
Kevin Wright ◽  
...  

ABSTRACT A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their “wild-type” progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD50) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD50 of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.


2012 ◽  
Vol 5 ◽  
pp. IDRT.S10652
Author(s):  
Takashi Irie ◽  
Elena Carnero ◽  
Adolfo García-Sastre ◽  
Ronald N. Harty

The M40 VSV recombinant was engineered to contain overlapping PTAP and PPxY L-domain motifs and flanking residues from the VP40 protein of Ebola virus. Replication of M40 in cell culture is virtually indistinguishable from that of control viruses. However, the presence of the Ebola PTAP motif in the M40 recombinant enabled this virus to interact with and recruit host Tsg101, which was packaged into M40 virions. In this brief report, we compared replication and the pathogenic profiles of M40 and the parental virus M51R in mice to determine whether the presence of the Ebola L-domains and flanking residues altered in vivo characteristics of the virus. Overall, the in vivo characteristics of M40 were similar to those of the parental M51R virus, indicating that the Ebola sequences did not alter pathogenesis of VSV in this small animal model of infection.


Sign in / Sign up

Export Citation Format

Share Document