scholarly journals Synergistic Attenuation of Vesicular Stomatitis Virus by Combination of Specific G Gene Truncations and N Gene Translocations

2006 ◽  
Vol 81 (4) ◽  
pp. 2056-2064 ◽  
Author(s):  
David K. Clarke ◽  
Farooq Nasar ◽  
Margaret Lee ◽  
J. Erik Johnson ◽  
Kevin Wright ◽  
...  

ABSTRACT A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their “wild-type” progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD50) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD50 of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.

2012 ◽  
Vol 5 ◽  
pp. IDRT.S10652
Author(s):  
Takashi Irie ◽  
Elena Carnero ◽  
Adolfo García-Sastre ◽  
Ronald N. Harty

The M40 VSV recombinant was engineered to contain overlapping PTAP and PPxY L-domain motifs and flanking residues from the VP40 protein of Ebola virus. Replication of M40 in cell culture is virtually indistinguishable from that of control viruses. However, the presence of the Ebola PTAP motif in the M40 recombinant enabled this virus to interact with and recruit host Tsg101, which was packaged into M40 virions. In this brief report, we compared replication and the pathogenic profiles of M40 and the parental virus M51R in mice to determine whether the presence of the Ebola L-domains and flanking residues altered in vivo characteristics of the virus. Overall, the in vivo characteristics of M40 were similar to those of the parental M51R virus, indicating that the Ebola sequences did not alter pathogenesis of VSV in this small animal model of infection.


2002 ◽  
Vol 76 (16) ◽  
pp. 8011-8018 ◽  
Author(s):  
Himangi R. Jayakar ◽  
Michael A. Whitt

ABSTRACT The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.


Vaccine ◽  
2009 ◽  
Vol 27 (22) ◽  
pp. 2930-2939 ◽  
Author(s):  
J. Erik Johnson ◽  
John W. Coleman ◽  
Narender K. Kalyan ◽  
Priscilla Calderon ◽  
Kevin J. Wright ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Veronica L. Fowler ◽  
David J. King ◽  
Emma L. A. Howson ◽  
Mikidache Madi ◽  
Steven J. Pauszek ◽  
...  

We report nine full-genome sequences of vesicular stomatitis virus obtained by Illumina next-generation sequencing of RNA, isolated from either cattle epithelial suspensions or cell culture supernatants. Seven of these viral genomes belonged to the New Jersey serotype/species (clade III), while two isolates belonged to the Indiana serotype/species.


2006 ◽  
Vol 80 (16) ◽  
pp. 8274-8278 ◽  
Author(s):  
Sungyong Won ◽  
Tetsuro Ikegami ◽  
C. J. Peters ◽  
Shinji Makino

ABSTRACT Rift Valley fever viruses carrying mutations of the M gene preglycoprotein region, one lacking NSm protein expression, one lacking 78-kDa protein expression, and one lacking expression of both proteins, were compared in cell culture. All of the mutants and their parent virus produced plaques with similar sizes and morphologies in Vero E6 cells and had similar growth kinetics in Vero, C6/36, and MRC5 cells, demonstrating that the NSm and 78-kDa proteins were not needed for the virus to replicate efficiently in cell culture. A competition-propagation assay revealed that the parental virus was slightly more fit than the mutant virus lacking expression of both proteins.


1979 ◽  
Vol 181 (2) ◽  
pp. 295-300 ◽  
Author(s):  
J Kruppa

I studied the glycosylation in vivo of a viral envelope protein, the glycoprotein of vesicular stomatitis virus (VSV), by pulse labelling of virus-infected HeLa cells with 3H-labelled monosaccharides (mannose, glucosamine). Radioactivity was incorporated into the fraction of membrane-bound polyribosomes, although metabolic conversion of [3H]-mannose into amino acids was negligible. Dissociation of bound polyribosomes revealed that the radioactively co-purified with the peptidyl-tRNA. The nascent peptides were released by alkaline hydrolysis, immunoprecipitated and analysed by polyacrylamide-gel electrophoresis. It is apparent from the size distribution of the [3H]mannose-labelled nascent chains that attachment of carbohydrate starts when approximately half of the amino acid sequence of the viral glycoprotein has been synthesized.


1967 ◽  
Vol 13 (8) ◽  
pp. 931-937 ◽  
Author(s):  
James B. Campbell ◽  
John S. Colter

The sensitivity to interferon, and interferon-producing capacities of three plaque variants of Mengo virus have been studied. It has been shown that the Mengo variants, which differ greatly in their pathogenicity for mice, induce the production of very little interferon in L cells or primary mouse embryo fibroblasts, and that all are about half as sensitive to inhibition by interferon as is vesicular stomatitis virus. Serum and brain interferon titers closely parallel serum and brain virus titers following the intraperitoneal injection of mice with 106 plaque-forming units (PFU) of each variant, but there is little difference in the amounts of interferon produced in lethal and in non-lethal infections. It is concluded that interferon production in vivo is unlikely to be more than a minor defense mechanism against infection with Mengo virus.


Sign in / Sign up

Export Citation Format

Share Document