scholarly journals Genome Sequences of Nine Vesicular Stomatitis Virus Isolates from South America

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Veronica L. Fowler ◽  
David J. King ◽  
Emma L. A. Howson ◽  
Mikidache Madi ◽  
Steven J. Pauszek ◽  
...  

We report nine full-genome sequences of vesicular stomatitis virus obtained by Illumina next-generation sequencing of RNA, isolated from either cattle epithelial suspensions or cell culture supernatants. Seven of these viral genomes belonged to the New Jersey serotype/species (clade III), while two isolates belonged to the Indiana serotype/species.

2017 ◽  
Vol 5 (37) ◽  
Author(s):  
Lauro Velazquez-Salinas ◽  
Pavel Isa ◽  
Steven J. Pauszek ◽  
Luis L. Rodriguez

ABSTRACT We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database.


2019 ◽  
Vol 8 (14) ◽  
Author(s):  
Thomas M. Russell ◽  
Evan E. Santo ◽  
Lisa Golebiewski ◽  
Nathan S. Haseley ◽  
Maureen C. Ferran

We report four near-complete genome sequences of vesicular stomatitis virus (VSV) Indiana obtained with Sanger and Illumina next-generation sequencing, namely, laboratory strains HR (heat resistant) and T1026R1 and isolates 22-20 and 22-25. Previously, only the M gene of these viruses had been sequenced, and these sequences were not deposited in GenBank.


2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Tyler Doerksen ◽  
Edward Bird ◽  
Jamie Henningson ◽  
Rachel Palinski

ABSTRACT Here, we report the near-complete genome sequences of vesicular stomatitis virus (VSV) serotype Indiana isolates from the 2020 U.S. outbreak. The sequences were obtained from swabs collected from Kansas horses in July and August. The four genome sequences help improve our understanding of VSV outbreak dynamics in the United States.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Mary A. Rodgers ◽  
Eduan Wilkinson ◽  
Ana Vallari ◽  
Carole McArthur ◽  
Larry Sthreshley ◽  
...  

ABSTRACT As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5′ end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C (n = 2), D (n = 1), F1 (n = 1), H (n = 3), and J (n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic. IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic.


2018 ◽  
Vol 6 (13) ◽  
Author(s):  
My V. T. Phan ◽  
Claudia M. E. Schapendonk ◽  
Bas B. Oude Munnink ◽  
Marion P. G. Koopmans ◽  
Rik L. de Swart ◽  
...  

ABSTRACT Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing.


2014 ◽  
Vol 142 (9) ◽  
pp. 1952-1962 ◽  
Author(s):  
D. GOEDHALS ◽  
P. A. BESTER ◽  
J. T. PAWESKA ◽  
R. SWANEPOEL ◽  
F. J. BURT

SUMMARYCrimean Congo haemorrhagic fever virus (CCHFV) is a bunyavirus with a single-stranded RNA genome consisting of three segments (S, M, L), coding for the nucleocapsid protein, envelope glycoproteins and RNA polymerase, respectively. To date only five complete genome sequences are available from southern African isolates. Complete genome sequences were generated for 10 southern African CCHFV isolates using next-generation sequencing techniques. The maximum-likelihood method was used to generate tree topologies for 15 southern African plus 26 geographically distinct complete sequences from GenBank. M segment reassortment was identified in 10/15 southern African isolates by incongruencies in grouping compared to the S and L segments. These reassortant M segments cluster with isolates from Asia/Middle East, while the S and L segments cluster with strains from South/West Africa. The CCHFV M segment shows a high level of genetic diversity, while the S and L segments appear to co-evolve. The reason for the high frequency of M segment reassortment is not known. It has previously been suggested that M segment reassortment results in a virus with high fitness but a clear role in increased pathogenicity has yet to be shown.


2015 ◽  
Vol 22 (3) ◽  
pp. 354-356 ◽  
Author(s):  
Fredrik Barrenas ◽  
Richard R. Green ◽  
Matthew J. Thomas ◽  
G. Lynn Law ◽  
Sean C. Proll ◽  
...  

ABSTRACTVesicular stomatitis virus expressing Zaire Ebola virus (EBOV) glycoprotein (VSVΔG/EBOVgp) could be used as a vaccine to meet the 2014 Ebola virus outbreak. To characterize the host response to this vaccine, we used mRNA sequencing to analyze peripheral blood mononuclear cells (PBMCs) from cynomolgus macaques after VSVΔG/EBOVgp immunization and subsequent EBOV challenge. We found a controlled transcriptional response that transitioned to immune regulation as the EBOV was cleared. This observation supports the safety of the vaccine.


Sign in / Sign up

Export Citation Format

Share Document