scholarly journals Flavihumibacter petaseus gen. nov., sp. nov., isolated from soil of a subtropical rainforest

2010 ◽  
Vol 60 (7) ◽  
pp. 1609-1612 ◽  
Author(s):  
Nan Nan Zhang ◽  
Jian Hang Qu ◽  
Hong Li Yuan ◽  
Yan Mei Sun ◽  
Jin Shui Yang

A yellow-coloured bacterium, T41T, was isolated from a soil sample of a subtropical rainforest in Nepal. Cells were Gram-reaction-positive, aerobic, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with Terrimonas ferruginea, Terrimonas lutea, Niabella soli, Flavisolibacter ginsengiterrae, Flavisolibacter ginsengisoli, Niastella yeongjuensis and Niastella koreensis in the phylum Bacteroidetes. The strain showed the highest sequence similarity to the type strain of Terrimonas lutea (93.2 %). The major isoprenoid quinone was MK-7 and the predominant cellular fatty acids (>10 %) were iso-15 : 0 (33.8 %), iso-15 : 1 G (13.3 %) and iso-17 : 0 3-OH (12.9 %). The DNA G+C content was 48.1 mol%. On the basis of phenotypic and phylogenetic data and genomic distinctiveness, strain T41T represents a novel species in a new genus in the phylum Bacteroidetes, for which the name Flavihumibacter petaseus gen. nov., sp. nov. is proposed. The type strain of Flavihumibacter petaseus is strain T41T (=CGMCC 1.7723T =NBRC 106054T).

2010 ◽  
Vol 60 (1) ◽  
pp. 134-139 ◽  
Author(s):  
Keun Sik Baik ◽  
Seong Chan Park ◽  
Eun Mi Kim ◽  
Chae Hong Lim ◽  
Chi Nam Seong

A non-motile, rod-shaped bacterium, designated strain WPCB133T, was isolated from freshwater collected from the Woopo wetland (Republic of Korea). Cells were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The strain contained MK-7 as the major isoprenoid quinone. The DNA G+C content was 47 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain WPCB133T forms an independent lineage within the genus Mucilaginibacter. Strain WPCB133T was distantly related to Mucilaginibacter kameinonensis SCKT (94.7 % sequence similarity), Mucilaginibacter paludis TPT56T (94.5 %) and Mucilaginibacter gracilis TPT18T (94.4 %). Phenotypic characteristics distinguished strain WPCB133T from members of the genus Mucilaginibacter. On the basis of evidence presented in this study, strain WPCB133T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter rigui sp. nov. is proposed. The type strain is WPCB133T (=KCTC 12534T =NBRC 101115T). An emended description of the genus Mucilaginibacter is also proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4410-4416 ◽  
Author(s):  
Soon Dong Lee

A novel actinobacterium, designated strain C4-31T, was isolated from soil collected from a cave. Cells were aerobic, Gram-reaction-positive, oxidase-negative, catalase-positive and non-motile cocci. Comparison of 16S rRNA gene sequences showed that the organism occupied a distinct phylogenetic position within the suborder Frankineae, with sequence similarity values of less than 93.2 % to members of this suborder. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unknown aminophospholipid and an unknown phospholipid. The major fatty acids were iso-C16 : 0, C17 : 1ω6c and C16 : 0. The G+C content of the DNA was 62.8 mol%. On the basis of morphological and chemotaxonomic data as well as phylogenetic evidence, strain C4-31T ( = KCTC 39556T = DSM 100065T) is considered to represent the type strain of a novel species of a new genus in the suborder Frankineae, for which the name Antricoccus suffuscus gen. nov., sp. nov. is proposed.


2007 ◽  
Vol 57 (9) ◽  
pp. 1956-1959 ◽  
Author(s):  
Bing Li ◽  
Keiko Furihata ◽  
Lin-Xian Ding ◽  
Akira Yokota

A polyphasic study was undertaken to establish the taxonomic position of an isolate, strain DS472T, from soil in Kyoto, Japan. Phylogenetic analysis, based on the 16S rRNA gene sequences, revealed that this strain constitutes a new subline within the genus Rhodococcus, with Rhodococcus yunnanensis YIM 70056T and Rhodococcus fascians DSM 20669T as its nearest phylogenetic neighbours (98.2 and 97.8 % sequence similarity, respectively). DNA–DNA hybridization experiments revealed 36 and 29 % relatedness between the isolate and its phylogenetic relatives, R. yunnanensis and R. fascians, respectively. Chemotaxonomic characteristics, including the major quinone MK-8(H2), predominant fatty acids C16 : 0, C18 : 1 ω9c and 10-methyl C18 : 0, the presence of cell-wall chemotype IV and mycolic acids, were consistent with the properties of members of the genus Rhodococcus. The DNA G+C content was 64.5 mol%. On the basis of both phenotypic and genotypic evidence, strain DS472T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus kyotonensis sp. nov. is proposed. The type strain is strain DS472T (=IAM 15415T=CCTCC AB206088T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1266-1270 ◽  
Author(s):  
Yang Liu ◽  
Lin Liu ◽  
Fubin Qiu ◽  
Peter Schumann ◽  
Yu Shi ◽  
...  

Four Gram-stain-positive, aerobic or facultatively anaerobic, motile, endospore-forming, rod-shaped bacteria, designated strains FeL05T, FeL11, Fek19 and Fek21, were isolated from seeds of hybrid rice (Oryza sativa L. Jinyou 611), and their taxonomic positions were determined using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four strains were members of the genus Paenibacillus. They showed 95.4 % sequence similarity or less with strains of other Paenibacillus species. The G+C content of strain FeL05T was found to be 53.3 mol%. Its predominant respiratory quinone was MK-7. The predominant cellular fatty acids were anteiso-C15 : 0 (61.7 %), C16 : 0 (10.9 %), iso-C16 : 0 (7.0 %), anteiso-C17 : 0 (6.7 %) and iso-C15 : 0 (5.2 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain FeL05T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus hunanensis sp. nov. is proposed. The type strain is strain FeL05T (=ACCC 10718T =CGMCC 1.8907T =DSM 22170T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1682-1686 ◽  
Author(s):  
Jung-Hye Choi ◽  
Min-Soo Kim ◽  
Mi-Ja Jung ◽  
Seong Woon Roh ◽  
Kee-Sun Shin ◽  
...  

A Gram-negative, aerobic, rod-shaped, motile, oxidase-positive, catalase-negative bacterium, designated strain BL03T, was isolated from landfill soil in Pohang, Republic of Korea. Colonies on Luria–Bertani agar plates were yellow. The strain grew in the presence of 0–3 % (w/v) NaCl, at 15–42 °C and at pH 5.0–9.5. The predominant ubiquinone was Q-10, and the major cellular fatty acids were C17 : 1 ω6c, C15 : 0 2-OH and C18 : 1 ω7c. Polar lipids detected were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unknown glycolipid. Spermidine was identified as the major polyamine component. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BL03T belongs to the genus Sphingopyxis with high sequence similarity to Sphingopyxis taejonensis JSS54T (97.8 %), Sphingopyxis alaskensis RB2256T (97.4 %) and Sphingopyxis chilensis S37T (96.9 %). Levels of DNA–DNA relatedness between strain BL03T and the above three type strains were only 10.3–40.3 %. The DNA G+C content of strain BL03T was 65.9 mol%. Based on the data presented, strain BL03T is considered to represent a novel species of the genus Sphingopyxis, for which the name Sphingopyxis soli sp. nov. is proposed. The type strain is BL03T (=KCTC 22405T =JCM 15910T).


2012 ◽  
Vol 62 (1) ◽  
pp. 223-228 ◽  
Author(s):  
Hong Wang ◽  
Xiuming Zhang ◽  
Shulin Yan ◽  
Zizhong Qi ◽  
Yong Yu ◽  
...  

A novel Gram-negative, non-motile bacterium, designated ZXM137T, was isolated from seawater collected from a coastal region of Qingdao, China, during a massive green algae (Enteromorpha prolifera) bloom. Strain ZXM137T was strictly aerobic and did not accumulate poly-β-hydroxybutyrate. Growth occurred with 0.5–11.0 % (w/v) NaCl, at pH 6–9 (optimum of pH 7) and at 4–45 °C (optimum at 28 °C). It contained Q-10 as the predominant ubiquinone and the major polar lipids were phosphatidylglycerol, phospholipids, and an unidentified aminolipid and lipid. The major cellular fatty acids of strain ZXM137T were C18 : 1ω7c, C18 : 1ω6c and 11-methyl C18 : 1ω7c. The DNA G+C content was 60.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain ZXM137T formed a distinct evolutionary lineage within the Roseobacter group in the class Alphaproteobacteria. On the basis of phenotypic, chemotaxonomic and phylogenetic evidence, strain ZXM137T represents a novel species in a new genus, for which the name Huaishuia halophila gen. nov., sp. nov. is proposed; the type strain is ZXM137T ( = CGMCC 1.8891T = LMG 24854T).


2007 ◽  
Vol 57 (3) ◽  
pp. 646-649 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Jin-Ho Kim ◽  
Youn-Kyung Baek ◽  
...  

A Gram-negative, strictly aerobic, non-spore-forming bacterium, motile by means of single polar flagellum and rod-shaped, designated strain GR12-1T, was isolated from soil of a ginseng field in Yeongju region, Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain is related to members of the genus Pseudoxanthomonas, showing sequence similarity values ranged from 92.3 to 96.2 %. This organism grew at 5–33 °C, with optimum growth at 28 °C. Strain GR12-1T grew optimally in the presence of 0–2 % NaCl. The whole-cell fatty acid profile included iso-C15 : 0, iso-C17 : 1 ω9c, iso-C16 : 0, iso-C11 : 0 3-OH and iso-C17 : 0 as major components. The only isoprenoid quinone was ubiquinone 8 (Q-8). The DNA G+C content was 63.4 mol%. On the basis of phenotypic, genetic and phylogenetic data, strain GR12-1T should be classified as a member of a novel species of the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas yeongjuensis sp. nov. is proposed, with strain GR12-1T (=KACC 11580T=DSM 18204T) as the type strain.


2007 ◽  
Vol 57 (8) ◽  
pp. 1694-1698 ◽  
Author(s):  
Soon-Wo Kwon ◽  
Byung-Yong Kim ◽  
Jaekyeong Song ◽  
Hang-Yeon Weon ◽  
Peter Schumann ◽  
...  

Two Gram-positive, aerobic, spore-forming rods, F73T and I80T, were isolated from upland soil. A phylogenetic analysis of 16S rRNA gene sequences placed both isolates within the genus Sporosarcina, and showed a sequence similarity of 98.9 % between the two strains and a similarity of approximately 94.6–97.3 % with respect to Sporosarcina species with validly published names. The values for DNA–DNA relatedness between the two isolates and related type strains of the genus Sporosarcina were below 28.0 %. For both strains, the major cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. In both cases, the cell-wall peptidoglycan was of the A4α type (l-Lys–d-Glu) and the major menaquinone was MK-7. Diaminopimelic acid was absent from both strains. The genomic DNA G+C contents of strains F73T and I80T were 46.5 and 44.5 mol%, respectively. On the basis of the phylogenetic analysis and physiological and chemotaxonomic data, the isolates represent two novel species of the genus Sporosarcina, for which the names Sporosarcina koreensis sp. nov. (type strain F73T =KACC 11299T =DSM 16921T) and Sporosarcina soli sp. nov. (type strain I80T =KACC 11300T =DSM 16920T) are proposed.


2012 ◽  
Vol 62 (2) ◽  
pp. 397-402 ◽  
Author(s):  
Rosa Margesin ◽  
Peter Schumann ◽  
De-Chao Zhang ◽  
Mersiha Redzic ◽  
Yu-Guang Zhou ◽  
...  

A Gram-stain-positive, aerobic, non-motile, psychrophilic bacterium, designated strain Cr6-08T, was isolated from alpine glacier cryoconite. Growth of strain Cr6-08T occurred at 1–25 °C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain Cr6-08T is most closely related to members of the genus Arthrobacter. Strain Cr6-08T possessed chemotaxonomic properties consistent with those of the genus Arthrobacter, such as peptidoglycan type A3α (l-Lys–l-Ala4), MK-9(H2) as major menaquinone and anteiso- and iso-branched compounds (anteiso-C15 : 0 and iso-C15 : 0) as major cellular fatty acids. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, one unknown glycolipid and three unknown polar lipids. The genomic DNA G+C content of strain Cr6-08T was 57.3 mol%. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain Cr6-08T is considered to represent a novel species of the genus Arthrobacter, for which the name Arthrobacter cryoconiti sp. nov. is proposed. The type strain is Cr6-08T ( = DSM 23324T  = LMG 26052T  = CGMCC 1.10698T).


Author(s):  
Byung-Chun Kim ◽  
Doo-Sang Park ◽  
Hyangmi Kim ◽  
Hyun-Woo Oh ◽  
Kang Hyun Lee ◽  
...  

A novel Gram-positive, non-motile, rod-shaped bacterium, designated strain RB-62T, was isolated during a study of culturable bacteria from the gut of Moechotypa diphysis (Pascoe) and its taxonomic position was investigated. Strain RB-62T grew at 15–30 °C and pH 5.0–8.5. The isoprenoid quinones were menaquinones MK-11 (77.1 %), MK-10 (11.7 %) and MK-12 (11.2 %). The major cellular fatty acids were anteiso-C15 : 0 (34.6 %), anteiso-C17 : 0 (29.8 %), iso-C16 : 0 (17.0 %) and cyclohexyl-C17 : 0 (11.4 %). The diagnostic diamino acid of the cell-wall peptidoglycan was 2,4-diaminobutyric acid. The G+C content of the genomic DNA of strain RB-62T was 70.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RB-62T was affiliated with the genus Herbiconiux cluster within the family Microbacteriaceae, and was related most closely to Herbiconiux ginsengi wged11T (98.08 % similarity). The level of DNA–DNA relatedness between strain RB-62T and H. ginsengi wged11T was 43.2 % (reciprocal 66.7 %). Phenotypic and phylogenetic characteristics clearly distinguished strain RB-62T from recognized species of the genus Herbiconiux. Based on data from the present polyphasic study, strain RB-62T is considered to represent a novel species of the genus Herbiconiux, for which the name Herbiconiux moechotypicola sp. nov. is proposed. The type strain is RB-62T ( = KCTC 19653T = JCM 16117T).


Sign in / Sign up

Export Citation Format

Share Document