scholarly journals Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples

2010 ◽  
Vol 60 (12) ◽  
pp. 2849-2856 ◽  
Author(s):  
Minna K. Männistö ◽  
Marja Tiirola ◽  
Jennifer McConnell ◽  
Max M. Häggblom

Five cold-adapted bacteria belonging to the genus Mucilaginibacter were isolated from lichen and soil samples collected from Finnish Lapland and investigated in detail by phenotypic and phylogenetic analyses. Based on 16S rRNA gene phylogeny, the novel strains represent three new branches within the genus Mucilaginibacter. The strains were aerobic, chemo-organotrophic, non-motile rods and formed pigmented, smooth, mucoid colonies on solid media. The strains grew between 0 and 33 °C (optimum growth at 25 °C) and at pH 4.5–8.0 (optimum growth at pH 6.0). The main cellular fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c/iso-C15 : 0 2-OH) and iso-C17 : 0 3-OH and the major respiratory quinone was MK-7. The DNA G+C contents were 44.0–46.5 mol%. Based on phylogenetic, phenotypic and chemotaxonomic data, the strains represent three novel species of the genus Mucilaginibacter for which the names Mucilaginibacter frigoritolerans sp. nov. (type strain FT22T =ATCC BAA-1854T =LMG 25359T), Mucilaginibacter lappiensis sp. nov. (type strain ANJLI2T =ATCC BAA-1855T =LMG 25358T) and Mucilaginibacter mallensis sp. nov. (type strain MP1X4T =ATCC BAA-1856T =LMG 25360T) are proposed.

2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2014-2020 ◽  
Author(s):  
Gundlapally S. N. Reddy ◽  
Ruth M. Potrafka ◽  
Ferran Garcia-Pichel

A novel isolate, CP153-2T, was obtained from topsoil biological crusts in the Colorado Plateau (USA). Colonies were black in colour due to melanin-like pigments when grown on oligotrophic medium, but not when grown on copiotrophic medium. Induction of melanogenesis was independent of growth phase or illumination conditions, including exposure to UVB and UVA radiation, but exposure to UVB could enhance total pigment production and growth under low nitrogen prevented its synthesis. This mode of regulation was previously unknown among melanin-producing bacteria. Polyphasic characterization of the strain revealed that cells were short, straight to curved or irregular rods that developed into pairs and formed multiseptate short filaments, with rare bud-like cells. Short rods were typically motile by means of flagella; multicellular structures tended to be sessile. Cells stained Gram-positive, grew at 4–30 °C and had a narrow range of pH tolerance (pH 5–9). The major fatty acids were iso-C15:0 iso-C16 : 0, anteiso-C15 : 0 and C18 : 1; MK-9(H4) was the major respiratory quinone. Its peptidoglycan contained meso-diaminopimelic acid. Based on 16S rRNA gene sequence similarity data, its closest relative (98.1 % similarity) was Modestobacter multiseptatus DSM 44406T, which is similar morphologically. Based on the above characteristics, strain CP153-2T was also assigned to the genus Modestobacter. However, CP153-2T had a relatedness of only 49.9 % in whole-genome reassociation comparisons with the type strain of M. multiseptatus and thus formally represents a novel species, for which the name Modestobacter versicolor sp. nov. is proposed. Additional evidence in support of a novel species comes from phenotypic and chemotaxonomic characteristics. Strain CP153-2T (=ATCC BAA-1040T =DSM 16678T) is the type strain of M. versicolor.


2010 ◽  
Vol 60 (3) ◽  
pp. 580-584 ◽  
Author(s):  
Muhammad Yasir ◽  
Zubair Aslam ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
Young Ryun Chung

A Gram-stain-negative, rod-shaped bacterium, designated strain YC7378T was isolated from vermicompost (VC) collected at Masan, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC7378T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC7378T belongs to the genus Sphingosinicella in the family Sphingomonadaceae. The most closely related strains are Sphingosinicella soli KSL-125T (95.7 %), Sphingosinicella xenopeptidilytica 3-2W4T (95.6 %) and Sphingosinicella microcystinivorans Y2T (95.5 %). Strain YC7378T contained ubiquinone Q-10 as the major respiratory quinone system and sym-homospermidine as the major polyamine. The major fatty acids of strain YC7378T were C18 : 1 ω7c, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C14 : 0 2-OH and C16 : 0. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The total DNA G+C content was 59.4 mol%. The phenotypic, phylogenetic and chemotaxonomic data showed that strain YC7378T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella vermicomposti sp. nov. is proposed. The type strain is YC7378T (=KCTC 22446T =DSM 21593T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2629-2633 ◽  
Author(s):  
Tomohiko Tamura ◽  
Yuumi Ishida ◽  
Misa Otoguro ◽  
Ken-ichiro Suzuki

Three short spore chain-forming actinomycete strains were isolated from soil samples collected from subtropical islands in Japan. The cell-wall peptidoglycan of these strains contained meso-diaminopimelic acid (meso-A2pm), glutamic acid and alanine. The major isoprenoid quinone was MK-9(H4), iso-C16 : 0 and 2-OH iso-C16 : 0 were the major cellular fatty acids and phosphatidylethanolamine was a component of the polar lipids. The G+C content of the genomic DNA was 67–69 mol%. Phylogenetic analyses based on the 16S rRNA gene sequences showed that the novel strains consistently formed a monophyletic cluster with Amycolatopsis taiwanensis. On the basis this polyphasic taxonomical study, it is proposed that the two new isolates represent two novel species: Amycolatopsis helveola (type strain TT00-43T=NBRC 103394T=KCTC 19329T) and Amycolatopsis pigmentata (type strain TT99-32T=NBRC 103392T=KCTC 19330T).


2006 ◽  
Vol 56 (4) ◽  
pp. 907-912 ◽  
Author(s):  
Luis França ◽  
Fred A. Rainey ◽  
M. Fernanda Nobre ◽  
Milton S. da Costa

Strains TU-16T and TU-18, two non-pigmented bacterial isolates with an optimum growth temperature of about 45 °C and an optimum pH of about 8·5–9·0, were recovered from the Furnas geothermal area on the Island of São Miguel in the Azores. Phylogenetic analysis of the 16S rRNA gene sequence of these strains indicated that they represent a novel species in a new genus of the phylum Betaproteobacteria. The major fatty acids of strains TU-16T and TU-18 were 16 : 0 and 18 : 1ω7c. Ubiquinone 8 was the major respiratory quinone and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The novel isolates were aerobic; thiosulfate was oxidized to sulfate in the presence of a metabolizable carbon source. The organism assimilated organic acids and amino acids, but did not assimilate carbohydrates or polyols. Based on phylogenetic analyses and physiological and biochemical characteristics, it is proposed that strain TU-16T (=LMG 23030T=CIP 108724T) represents the type strain of a novel species in a new genus, Tepidicella xavieri gen. nov., sp. nov.


2007 ◽  
Vol 57 (5) ◽  
pp. 1035-1040 ◽  
Author(s):  
André Antunes ◽  
Luis França ◽  
Fred A. Rainey ◽  
Robert Huber ◽  
M. Fernanda Nobre ◽  
...  

Two moderately halophilic Gram-negative bacteria were isolated from a sample taken from the brine–seawater interface of the Shaban Deep in the Red Sea. Phylogenetic analysis of the 16S rRNA gene sequence showed that these organisms represent a novel species of the genus Marinobacter. Cells of the new isolates formed non-pigmented colonies and were motile by means of a single polar flagellum. Strains SD-14BT and SD-14C grew optimally at 35–37 °C, in 5 % NaCl and at pH 7.5–8.0. The organisms were aerobic, but reduced nitrate to nitrogen under anaerobic conditions. Acid was produced from only a few carbohydrates. Ubiquinone 9 was the major respiratory quinone. The major fatty acids of strains SD-14BT and SD-14C were C16 : 0, C18 : 1 ω9c, summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c) and C12 : 0 3-OH. The DNA G+C contents were 55.9 and 55.7 mol%, respectively. On the basis of the phylogenetic analyses and physiological and biochemical characteristics, it is proposed that strains SD-14BT and SD-14C represent a novel species of the genus Marinobacter, with the name Marinobacter salsuginis sp. nov. The type strain is strain SD-14BT (=DSM 18347T=LMG 23697T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2630-2634 ◽  
Author(s):  
Yang Liu ◽  
Xie-Xie Shang ◽  
Zhi-Wei Yi ◽  
Li Gu ◽  
Run-Ying Zeng

A taxonomic study was carried out on strain YQH10T, which was isolated from mangrove sediment collected from Zhangzhou, China during the screening of acetaldehyde-degrading bacteria. Cells of strain YQH10T were Gram-stain-negative rods and pale brown-pigmented. Growth was observed at salinities from 0 to 11 % and at temperatures from 4 to 42 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YQH10T is affiliated to the genus Shewanella, showing the highest similarity with Shewanella haliotis DW01T (95.7 %) and other species of the genus Shewanella (91.4–95.6 %). The principal fatty acids were iso-C15 : 0 and C17 : 1ω8c. The major respiratory quinone was Q-8. The polar lipids comprised phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA had a G+C content of 48.3 mol%. Strain YQH10T can completely degrade 0.02 % (w/v) acetaldehyde on 2216E at 28 °C within 48 h. Based on these phenotypic and genotypic data, strain YQH10T represents a novel species of the genus Shewanella, for which the name Shewanella mangrovi sp. nov. is proposed. The type strain is YQH10T ( = MCCC 1A00830T = JCM 30121T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1506-1510 ◽  
Author(s):  
Yochan Joung ◽  
Kiseong Joh

A non-motile, pale-yellow bacterium, designated strain HMD1056T, was isolated from an artificial lake located within the campus of Hankuk University of Foreign Studies, Yongin, Korea. The major fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c; 49.1 %) and iso-C15 : 0 (22.4 %). The major respiratory quinone was MK-7. The DNA G+C content was 46.9 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD1056T formed a lineage within the genus Mucilaginibacter and was closely related to the type strains of Mucilaginibacter ximonensis (95.4 % sequence similarity), Mucilaginibacter kameinonensis (94.5 %) and Mucilaginibacter paludis (93.4 %). On the basis of the evidence presented in this study, strain HMD1056T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter myungsuensis sp. nov. is proposed. The type strain is HMD1056T ( = KCTC 22746T  = CECT 7550T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1554-1558 ◽  
Author(s):  
Rangasamy Anandham ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Soon-Wo Kwon

A strictly aerobic, Gram-staining-negative, oxidase- and catalase-positive, non-motile, rod-shaped bacterium, designated strain 5416T-29T, was isolated from air and was characterized by using a polyphasic approach. Colonies were reddish pink and circular with entire margins. Flexirubin-type pigments were absent. The strain formed a distinct phylogenetic lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain 5416T-29T did not show more than 88 % 16S rRNA gene sequence similarity to the type strain of any recognized species. The major cellular fatty acids were C16 : 1 ω5c, iso-C17 : 0 3-OH and iso-C15 : 0. The polar lipids were phosphatidylethanolamine, one unknown amino lipid and several unknown polar lipids. Menaquinone-7 (MK-7) was the major respiratory quinone. The G+C content of the DNA of strain 5416T-29T was 45.5 mol%. Results of phenotypic and phylogenetic analyses clearly indicate that strain 5416T-29T represents a novel species of a new genus in the family Cytophagaceae, for which the name Rhodocytophaga aerolata gen. nov., sp. nov. is proposed. The type strain of Rhodocytophaga aerolata is 5416T-29T (=KACC 12507T =DSM 22190T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1191-1195 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Byung-Yong Kim ◽  
...  

Two strains of pink-coloured bacteria, 5516T-9T and 5516T-11T, were isolated from an air sample collected in Korea. The taxonomic status of these novel strains was investigated by means of a polyphasic approach. The novel strains were Gram-positive, aerobic, non-spore-forming and coccus-shaped bacteria. The DNA G+C contents of strains 5516T-9T and 5516T-11T were 61.0 and 59.3 mol%, respectively. The major isoprenoid quinone for both strains was MK-8. Strain 5516T-9T contained summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C16 : 0 and iso-C17 : 1 ω9c, and strain 5516T-11T contained summed feature 3, iso-C17 : 1 ω9c, C17 : 1 ω8c and C15 : 1 ω6c as the major fatty acids (>10 %). The polar lipid patterns of both strains were similar, comprising one phospholipid and one aminophospholipid as the major components. Phylogenetic analyses using 16S rRNA gene sequences showed that both novel strains were affiliated to the genus Deinococcus. Strain 5516T-9T exhibited the highest sequence similarity with Deinococcus marmoris DSM 12784T (96.8 %) and strain 5516T-11T showed the highest sequence similarity with Deinococcus saxicola DSM 15974T (94.5 %). The sequence similarity between strains 5516T-9T and 5516T-11T was 94.7 %. On the basis of the data presented, it is evident that both strains represent separate novel species of the genus Deinococcus for which the names Deinococcus aerolatus sp. nov. (type strain 5516T-9T=KACC 12745T=JCM 15442T) and Deinococcus aerophilus sp. nov. (type strain 5516T-11T=KACC 12746T=JCM 15443T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document