scholarly journals Description of Catellibacterium caeni sp. nov., reclassification of Rhodobacter changlensis Anil Kumar et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium

2011 ◽  
Vol 61 (8) ◽  
pp. 1921-1926 ◽  
Author(s):  
Jin-Wei Zheng ◽  
Yi-Guang Chen ◽  
Jun Zhang ◽  
Ying-Ying Ni ◽  
Wen-Jun Li ◽  
...  

A novel non-sporulating, non-motile, catalase- and oxidase-positive, strictly aerobic, Gram-negative, rod-shaped bacterial strain, designated DCA-1T, was isolated from activated sludge collected from a butachlor wastewater treatment facility. The strain was able to degrade about 85 % of 100 mg butachlor l−1 within 5 days of incubation. Growth occurred in the presence of 0–6 % (w/v) NaCl [optimum, 1 % (w/v) NaCl] and at pH 5.5–9.0 (optimum, pH 7.0) and 15–35 °C (optimum, 25–30 °C). Vesicular internal membrane structures and photoheterotrophic growth were not observed. The major respiratory quinone was ubiquinone 10 (Q-10) and the major cellular fatty acids were C18 : 1ω7c and 11-methyl C18 : 1ω7c. The genomic DNA G+C content of strain DCA-1T was 62.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain DCA-1T was a member of the family Rhodobacteraceae and was related most closely to the type strain of Catellibacterium aquatile (96.5 % sequence similarity). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supports the suggestion that strain DCA-1T represents a novel species of the genus Catellibacterium, for which the name Catellibacterium caeni sp. nov. is proposed. The type strain is DCA-1T ( = CGMCC 1.7745T  = DSM 21823T). In addition, based on the characterization data obtained in this study, it is proposed that Rhodobacter changlensis should be reclassified as Catellibacterium changlense comb. nov. (type strain JA139T  = DSM 18774T  = CCUG 53722T  = JCM 14338T). An emended description of the genus Catellibacterium is also presented.

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 274-279 ◽  
Author(s):  
T. N. R. Srinivas ◽  
T. B. Kailash ◽  
Pinnaka Anil Kumar

A novel Gram-negative, rod-shaped, motile bacterium, designated strain AK13T, was isolated from a sediment sample collected from mangrove of Namkhana, Sunderbans, West Bengal, India. Strain AK13T was positive for oxidase, DNase and lipase activities and negative for catalase, gelatinase, ornithine decarboxylase, lysine decarboxylase, nitrate reductase, aesculinase and urease activities. The fatty acids were dominated by iso-C11 : 0, iso-C11 : 0 3-OH, iso-C15 : 0, iso-C16 : 0, iso-C17 : 1ω9c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Strain AK13T contained Q-8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, two unidentified aminolipids, one unidentified glycolipid and one unidentified lipid as the polar lipids. The DNA G+C content of strain AK13T was 55.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the type strain of Silanimonas lenta , of the family Xanthomonadaceae (phylum Proteobacteria ), was the closest neighbour of strain AK13T, with 95.2 % sequence similarity. Other members of the family showed sequence similarities <94.4 %. Based on the phenotypic characteristics and phylogenetic inference, strain AK13T is proposed as a member of a novel species of the genus Silanimonas , Silanimonas mangrovi sp. nov.; the type strain is AK13T ( = MTCC 11082T  = DSM 24914T). An emended description of the genus Silanimonas is also provided.


2010 ◽  
Vol 60 (7) ◽  
pp. 1554-1558 ◽  
Author(s):  
Rangasamy Anandham ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Soon-Wo Kwon

A strictly aerobic, Gram-staining-negative, oxidase- and catalase-positive, non-motile, rod-shaped bacterium, designated strain 5416T-29T, was isolated from air and was characterized by using a polyphasic approach. Colonies were reddish pink and circular with entire margins. Flexirubin-type pigments were absent. The strain formed a distinct phylogenetic lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain 5416T-29T did not show more than 88 % 16S rRNA gene sequence similarity to the type strain of any recognized species. The major cellular fatty acids were C16 : 1 ω5c, iso-C17 : 0 3-OH and iso-C15 : 0. The polar lipids were phosphatidylethanolamine, one unknown amino lipid and several unknown polar lipids. Menaquinone-7 (MK-7) was the major respiratory quinone. The G+C content of the DNA of strain 5416T-29T was 45.5 mol%. Results of phenotypic and phylogenetic analyses clearly indicate that strain 5416T-29T represents a novel species of a new genus in the family Cytophagaceae, for which the name Rhodocytophaga aerolata gen. nov., sp. nov. is proposed. The type strain of Rhodocytophaga aerolata is 5416T-29T (=KACC 12507T =DSM 22190T).


2011 ◽  
Vol 61 (2) ◽  
pp. 330-333 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Duck-Chul Oh

A Gram-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, oxidase- and catalase-positive, marine bacterium, designated A2T, was isolated from a marine sponge, Hymeniacidon flavia, collected from the coast of Jeju Island, South Korea. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that strain A2T was a member of the family Flavobacteriaceae. Its closest relatives were Formosa agariphila KMM 3901T and Formosa algae KMM 3553T (96.99 and 96.98 % 16S rRNA gene sequence similarity, respectively). DNA–DNA relatedness between strain A2T and F. agariphila KMM 3901T and F. algae KMM 3553T was 14.1 and 26.8 %, respectively. The dominant fatty acids (>5 %) of strain A2T were iso-C15 : 0 (33.9 %), iso-C17 : 0 3-OH (20.8 %), iso-C15 : 1 G (10.5 %) and iso-C15 : 0 3-OH (6.1 %). The DNA G+C content of strain A2T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of phenotypic and phylogenetic analysis, strain A2T represents a novel species of the genus Formosa, for which the name Formosa spongicola sp. nov. is proposed. The type strain is A2T (=KCTC 22662T =DSM 22637T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2734-2739 ◽  
Author(s):  
Chae-Sung Lim ◽  
Yong-Sik Oh ◽  
Jae-Kwan Lee ◽  
A-Rum Park ◽  
Jae-Soo Yoo ◽  
...  

A yellow-pigmented, Gram-staining-negative, non-motile, strictly aerobic and rod-shaped bacterium, designated CS100T, was isolated from soil in Chungbuk, Korea. Phylogenetic analysis and comparative studies based on the 16S rRNA gene sequence showed that strain CS100T belonged to the genus Flavobacterium in the family Flavobacteriaceae. Strain CS100T showed the highest sequence similarities to Flavobacterium glaciei JCM 13953T (97.6 %) and Flavobacterium johnsoniae KACC 11410T (97.1 %). Sequence similarity to other members of the genus Flavobacterium was 91.5–97.0 %. Growth occurred at 4–30 °C, at pH 5.0–9.0 and in the presence of 0–2 % (w/v) NaCl. Flexirubin-type pigments were produced. Menaquinone-6 (MK-6) was the major respiratory quinone and the major fatty acids were iso-C15 : 0 (17.3 %), summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 15.5 %) and C16 : 0 (11.8 %). The DNA G+C content was 36.4 mol%. Strain CS100T hydrolysed skimmed milk and gelatin, but not chitin or pectin, and showed oxidase and catalase activities. DNA–DNA relatedness was 3.0 % with F. glaciei JCM 13953T and 11.5 % with F. johnsoniae KACC 11410T. On the basis of the evidence from this study, strain CS100T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium chungbukense sp. nov. is proposed. The type strain is CS100T ( = KACC 15048T = JCM 17386T).


2010 ◽  
Vol 60 (3) ◽  
pp. 580-584 ◽  
Author(s):  
Muhammad Yasir ◽  
Zubair Aslam ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
Young Ryun Chung

A Gram-stain-negative, rod-shaped bacterium, designated strain YC7378T was isolated from vermicompost (VC) collected at Masan, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC7378T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC7378T belongs to the genus Sphingosinicella in the family Sphingomonadaceae. The most closely related strains are Sphingosinicella soli KSL-125T (95.7 %), Sphingosinicella xenopeptidilytica 3-2W4T (95.6 %) and Sphingosinicella microcystinivorans Y2T (95.5 %). Strain YC7378T contained ubiquinone Q-10 as the major respiratory quinone system and sym-homospermidine as the major polyamine. The major fatty acids of strain YC7378T were C18 : 1 ω7c, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C14 : 0 2-OH and C16 : 0. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The total DNA G+C content was 59.4 mol%. The phenotypic, phylogenetic and chemotaxonomic data showed that strain YC7378T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella vermicomposti sp. nov. is proposed. The type strain is YC7378T (=KCTC 22446T =DSM 21593T).


2011 ◽  
Vol 61 (4) ◽  
pp. 864-869 ◽  
Author(s):  
Ahyoung Choi ◽  
Hyun-Myung Oh ◽  
Seung-Jo Yang ◽  
Jang-Cheon Cho

A Gram-negative, chemoheterotrophic, yellow-pigmented, non-motile, flexirubin-negative, facultatively anaerobic bacterium, designated strain IMCC1412T, was isolated from a marine polychaete Periserrula leucophryna inhabiting a tidal flat of the Yellow Sea, Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IMCC1412T was most closely related to Kordia algicida, with a sequence similarity of 96.7 %, but only distantly related to other species in the family Flavobacteriaceae (<92 % similarity). The G+C content of the DNA was 37.3 mol%. The strain contained MK-6 as the major respiratory quinone and phosphatidylethanolamine, unidentified aminolipids and unidentified polar lipids as the major polar lipids. On the basis of phylogenetic distinctiveness and differential phenotypic characteristics, strain IMCC1412T ( = KACC 14311T = KCTC 22801T = NBRC 106077T) should be assigned to the genus Kordia as the type strain of a novel species, for which the name Kordia periserrulae sp. nov. is proposed. An emended description of the genus Kordia is also presented.


2010 ◽  
Vol 60 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Kundi Zhang ◽  
Yang Wang ◽  
Yali Tang ◽  
Jun Dai ◽  
Lei Zhang ◽  
...  

A novel bacterial strain, designated THYL-44T, was isolated from the soil of a Euphrates poplar (Populus euphratica) forest in Xinjiang, China. The cells were strictly aerobic, Gram-staining-negative, non-flagellated, non-motile and filamentous. Growth occurred at 17–37 °C (optimum 30 °C), at pH 5.0–8.0 (optimum pH 7.0) and with 0–1 % NaCl (w/v; optimum 0 %). Flexirubin pigments were not produced. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain THYL-44T was closely related to Niastella koreensis KACC 11465T (95.5 % sequence similarity). The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0 (28.6 %), iso-C17 : 0 3-OH (23.9 %) and iso-C15 : 1 G (17.4 %). The DNA G+C content was 45.2 mol%. Therefore, the phylogenetic, physiological and chemotaxonomic data demonstrated that strain THYL-44T represents a novel species of the genus Niastella, for which the name Niastella populi sp. nov. is proposed. The type strain is THYL-44T (=CCTCC AB 208238T=KCTC 22560T). On the basis of new data, an emended description of the genus Niastella is also proposed.


2007 ◽  
Vol 57 (5) ◽  
pp. 986-992 ◽  
Author(s):  
Iftikhar Ahmed ◽  
Akira Yokota ◽  
Toru Fujiwara

A non-motile, Gram-negative, boron-tolerant and alkaliphilic bacterium was isolated from soil of the Hisarcik area in the Kutahya Province of Turkey that was naturally high in boron minerals. The novel isolate, designated T-22T, formed rod-shaped cells, was catalase- and oxidase-positive and tolerated up to 300 mM boron. The strain also survived on agar medium containing up to 3 % (w/v) NaCl. The pH range for growth of this strain was 6.5–10.0 (optimum pH 8.0–9.0) and the temperature range was 16–37 °C (optimum 28–30 °C). Phylogenetic analysis based on 16S rRNA gene sequences revealed a clear affiliation with the genus Chimaereicella, with 97.4 % sequence similarity to Chimaereicella alkaliphila AC-74T, which was the highest similarity among cultivated bacteria. The DNA–DNA relatedness with C. alkaliphila AC-74T was 28.3 %. The major respiratory quinone system was MK-7 and the predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 1 ω9c, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or iso-C16 : 1 ω7c). The DNA G+C content was 42.5 mol%. Based on the phylogenetic analysis and physiological, chemotaxonomic and genetic data, we concluded that strain T-22T should be classified in the genus Chimaereicella, and we propose the name Chimaereicella boritolerans sp. nov. for this novel species. The type strain is strain T-22T (=DSM 17298T=NBRC 101277T=ATCC BAA-1189T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2540-2544 ◽  
Author(s):  
Xiaofeng Dai ◽  
Xiaochong Shi ◽  
Xin Gao ◽  
Jingli Liu ◽  
Xiao-Hua Zhang

A Gram-stain-negative, strictly aerobic, non-motile, cream, long rod-shaped bacterium, designated strain ZL136T, was isolated from deep water of the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain belonged to the genus Roseivivax with highest sequence similarity to Roseivivax halodurans OCh 239T (97.0 %), followed by Roseivivax isoporae sw-2T (96.9 %). Growth occurred at 4–37 °C (optimum 32 °C), pH 6.0–10.0 (optimum 8.0) and in the presence of 0–12 % (w/v) NaCl (optimum 3–4 %) in marine broth 2216. Strain ZL136T did not produce bacteriochlorophyll a. The predominant fatty acids were C18 : 1ω7c and/or C18 : 1ω6c, C18 : 0, C16 : 0 and 11-methyl C18 : 1ω7c. The major polar lipids of ZL136T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified lipid. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZL136T was 67.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain ZL136T was classified as a representative of a novel species in the genus of Roseivivax , for which the name Roseivivax marinus sp. nov. is proposed. The type strain is ZL136T ( = JCM 19386T = KCTC 32470T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3256-3261 ◽  
Author(s):  
Chang Liu ◽  
Xi-Ying Zhang ◽  
Xiao-Yan Song ◽  
Hai-Nan Su ◽  
Qi-Long Qin ◽  
...  

A novel Gram-reaction-negative, aerobic, pale-orange-pigmented bacterium, designated strain SM1216T, was isolated from Arctic intertidal sand. Cells of strain SM1216T were dimorphic rods with a single polar prostheca or flagellum. The strain grew at 4 − 30 °C (optimum at 25 °C) and with 0.5 − 6 % (w/v) NaCl (optimum with 2 − 3 %). It reduced nitrate to nitrite but did not hydrolyse gelatin, DNA or Tween 80. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1216T was affiliated with the genus Algimonas in the family Hyphomonadaceae, sharing 97.5 and 96.3 % similarity with Algimonas ampicilliniresistens 14A-2-7T and Algimonas porphyrae 0C-2-2T, respectively, the two known species in the genus Algimonas. However, the level of DNA–DNA relatedness between strain SM1216T and the type strain of A. ampicilliniresistens, the nearest phylogenetic neighbour, was 57.9 %. The major cellular fatty acids of strain SM1216T were C18 : 1ω7c and C18 : 1 2-OH. The main polar lipids of strain SM1216T were monoglycosyldiglyceride (MGDG), glucuronopyranosyldiglyceride (GUDG), phosphatidylglycerol (PG) and three unidentified phospholipids (PL1–3). The major respiratory quinone was ubiquinone 10 (Q10). The genomic G+C content of strain SM1216T was 60.6 mol%. On the basis of the evidence from this polyphasic study, strain SM1216T represents a novel species in the genus Algimonas, for which the name Algimonas arctica sp. nov. is proposed. The type strain is SM1216T ( = MCCC 1K00233T = KCTC 32513T). An emended description of the genus Algimonas is also given.


Sign in / Sign up

Export Citation Format

Share Document