scholarly journals Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae

2011 ◽  
Vol 61 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Two extremely halophilic archaeal strains, TBN21T and TBN49, were isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-negative and colonies were red. Strains TBN21T and TBN49 were able to grow at 25–50 °C (optimum 37 °C), at 1.4–5.1 M NaCl (optimum 3.4–3.9 M) and at pH 5.5–9.5 (optimum pH 7.0–7.5) and neither strain required Mg2+ for growth. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of the two strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and eight glycolipids; three of these glycolipids (GL3, GL4 and GL5) were chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1), galactosyl mannosyl glucosyl diether (TGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Phylogenetic analysis revealed that strains TBN21T and TBN49 formed a distinct clade with their closest relative, Halobaculum gomorrense JCM 9908T (89.0–89.5 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains TBN21T and TBN49 were 64.8 and 62.7 mol%, respectively. DNA–DNA hybridization between strains TBN21T and TBN49 was 90.1 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains TBN21T and TBN49 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halolamina pelagica gen. nov., sp. nov. is proposed. The type strain of Halolamina pelagica is TBN21T ( = CGMCC 1.10329T  = JCM 16809T).

2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4113-4120 ◽  
Author(s):  
Holed Juboi ◽  
Ann Anni Basik ◽  
Sunita Sara Gill Shamsul ◽  
Phil Arnold ◽  
Esther K. Schmitt ◽  
...  

The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T was closely associated with the genus Luteipulveratus and formed a distinct monophyletic clade with the only described species, Luteipulveratus mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis was 98.7 %. DNA–DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5 %. The DNA G+C content of strain C296001T was 71.7 mol%. Using a PacBio RS II system, whole genome sequences for strains C296001T and NBRC 105296T were obtained. The genome sizes of 4.5 Mbp and 5.4 Mbp determined were similar to those of other members of the family Dermacoccaceae. The cell-wall peptidoglycan contained lysine, alanine, aspartic acid, glutamic acid and serine, representing the peptidoglycan type A4α l-Lys-l-Ser-d-Asp. The major menaquinones were MK-8(H4), MK-8 and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid were the polar lipids, while the whole-cell sugars were glucose, fucose and lesser amounts of ribose and galactose. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, iso-C18 : 0 and 10-methyl C17 : 0. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. On the basis of the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a representative of a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T ( = ATCC TSD-4T = JCM 30660T).


2011 ◽  
Vol 61 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Sun-Jung Kim ◽  
Sang-Seob Lee

A Gram-positive, non-motile bacterium, designated KSL51201-037T, was isolated from Anyang stream, Republic of Korea, and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL51201-037T belonged to the family Microbacteriaceae of the class Actinobacteria and exhibited 96.9 % gene sequence similarity to Labedella gwakjiensis KSW2-17T, 96.0 % to Leifsonia ginsengi wged11T and 95.9 % to Microterricola viridarii KV-677T. The G+C content of the genomic DNA was 72.7 mol%. Strain KSL51201-037T had l-2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, MK-11 and MK-12 as the major menaquinones, anteiso-C15 : 0 (47.8 %) and iso-C16 : 0 (24.0 %) as the major fatty acids and phosphatidylglycerol and three unknown phospholipids as the major polar lipids. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, it is suggested that strain KSL51201-037T represents a novel species of a new genus in the family Microbacteriaceae for which the name Amnibacterium kyonggiense gen. nov., sp. nov. is proposed. The type strain of the type species is KSL51201-037T (=KEMC 51201-037T=JCM 16463T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2029-2033 ◽  
Author(s):  
Heng-Lin Cui ◽  
Wen-Jiao Zhang

Halophilic archaeal strain GX10T was isolated from the Gangxi marine solar saltern in China. Strain GX10T was observed to have pleomorphic cells that lysed in distilled water, stained Gram-negative and produced red-pigmented colonies. Strain GX10T was able to grow at 20–50 °C (optimum 37 °C), with 1.4–4.8 M NaCl (optimum 3.1 M NaCl), with 0–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.0–9.0 (optimum pH 7.0). The major polar lipids of strain GX10T were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, and five unidentified glycolipids. Phylogenetic tree reconstructions based on 16S rRNA gene and rpoB′ sequences revealed that strain GX10T was distinct from the related genera, Halogranum , Haloferax , Halopelagius , Halogeometricum , Halobellus , Haloplanus and Halorubrum . The DNA G+C content of strain GX10T was 62.9 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain GX10T represents a novel species of a new genus within the family Halobacteriaceae , for which the name Salinigranum rubrum gen. nov., sp. nov. is proposed. The type strain of the type species is GX10T ( = CGMCC 1.10385T = JCM 17116T).


2007 ◽  
Vol 57 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Spyridon Ntougias ◽  
Constantinos Fasseas ◽  
Georgios I. Zervakis

A novel, Gram-negative, non-motile, non-sporulating, rod-shaped bacterium isolated from a viscous two-phase olive-oil mill waste (‘alpeorujo’) is described. The strain, designated AW-6T, is an obligate aerobe, forming irregular, pigmented creamy white colonies. The pH and temperature ranges for growth were pH 5–8 and 5–45 °C, with optimal pH and temperature for growth of pH 6–7 and 28–32 °C, respectively. Strain AW-6T was chemo-organotrophic and utilized mostly d(+)-glucose, protocatechuate and d(+)-xylose, followed by l-cysteine, d(−)-fructose, d(+)-galactose, l-histidine, lactose, sorbitol and sucrose. Menaquinone-7 was detected in the respiratory chain of strain AW-6T. The major fatty acids of strain AW-6T were C16 : 1 ω7c and/or iso-C15 : 0 2-OH, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0. The closest phylogenetic relative of strain AW-6T was clone BIti35 (89.7 % 16S rRNA gene sequence similarity), while Sphingobacterium thalpophilum DSM 11723T was the closest recognized relative within the Sphingobacteriaceae (88.2 % similarity). Strain AW-6T showed a low level of DNA–DNA relatedness to S. thalpophilum DSM 11723T (33.8–37.0 %). The DNA G+C content of strain AW-6T was 45.6 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain AW-6T from members of the genera Sphingobacterium and Pedobacter. Thus, strain AW-6T is considered to represent a novel species of a new genus within the family Sphingobacteriaceae, for which the name Olivibacter sitiensis gen. nov., sp. nov. is proposed. The type strain is AW-6T (=DSM 17696T=CECT 7133T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 469-474 ◽  
Author(s):  
Ying Liu ◽  
Liang-Zi Liu ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Fang-Jun Qi ◽  
...  

A Gram-stain-negative, strictly aerobic and heterotrophic bacterial strain, designed strain D1T, was isolated from a recirculating mariculture system in Tianjin, China. Its taxonomic position was determined using a polyphasic approach. Cells of strain D1T were non-flagellated short rods, 0.3–0.5 µm wide and 0.5–1.0 µm long. Growth was observed at 15–30 °C (optimum, 25 °C), at pH 5.5–9.0 (optimum, pH 6.5–7.0) and in the presence of 1–8 % (w/v) NaCl (optimum, 2–3 %). Cells contained carotenoid pigments but not flexirubin-type pigments. Strain D1T contained MK-6 as the sole menaquinone and phosphatidylethanolamine (PE) as the sole phospholipid and four unidentified lipids. The major cellular fatty acids (>10 %) were iso-C15 : 0 (23.2 %), iso-C17 : 0 3-OH (15.2 %), C16 : 1ω7c/C16 : 1ω6c (14.3 %), iso-C15 : 0 3-OH (13.5 %) and iso-C15 : 1 G (10.8 %). 16S rRNA gene sequence analyses indicated that strain D1T belonged to the family Flavobacteriaceae and showed closest phylogenetic relationship to the genus Lutibacter , with highest sequence similarity to Lutibacter aestuarii MA-My1T (92.2 %). The DNA G+C content of strain D1T was 35.9 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D1T was considered to represent a novel species in a new genus of the family Flavobacteriaceae , for which the name Wenyingzhuangia marina gen. nov., sp. nov. is proposed. The type strain of the type species is D1T ( = CGMCC 1.12162T = JCM 18494T).


2021 ◽  
Author(s):  
Heng Zhou ◽  
Ming Yang ◽  
Qiong Xue ◽  
Shengjie Zhang ◽  
Jian Zhou ◽  
...  

Abstract A novel Gram-stain negative bacterium, designated IM2376T, was isolated from the sediment of Hutong Qagan Lake in Ordos, Inner Mongolia Autonomous Region of China. The strain IM2376T had the highest similarity with Roseinatronobacter thiooxidans DSM 13087T (96.18%) and Rhodobaca bogoriensis LBB1T (96.18%) of the family Rhodobacteraceae according to 16S rRNA gene sequence comparison. Genomic relatedness analyses showed that strain IM2376T was clearly distinguished from other species in the family Rhodobacteraceae, with average nucleotide identities, amino acid identities and in silico DNA-DNA hybridization values not more than 74.1%, 68.5% and 20.2%. The fatty acid was mainly composed of C18:1ω7c (64.86%), iso-C16:0 (16.33%) and C16: 1ω7c/C16:1ω6c (6.02%). The major polar lipid was diphosphatidyl glycerol, phosphatidylglycerol and phosphatidylcholine. The predominant ubiquinone was Q-10 (94.9%) and Q-11 (5.1%). The DNA G + C was 66 mol%. Based on all these results, strain IM2376T was considered to be a novel species of a new genus in the family Rhodobacteraceae, for which the name Rhabdonatronobacter sediminivivens gen. nov., sp. nov. is proposed. The type strain is IM2376T (= CGMCC 1.17852T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2266-2270 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Syuhei Nagaoka ◽  
...  

Strain YSM-79T was isolated from commercial salt made from seawater in Yonaguni island, Okinawa, Japan. The strain is an aerobic, Gram-negative, chemo-organotrophic and extremely halophilic archaeon. Cells are short rods that lyse in distilled water. Growth occurs at 1.5–5.3 M NaCl (optimum 2.5–3.0 M), pH 5.0–8.8 (optimum pH 5.2–6.3) and 20–55 °C (optimum 40 °C). Mg2+ is required for growth, with maximum growth at 200–300 mM Mg2+. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, sulfated diglycosyl diether-1 and five unidentified glycolipids. The G+C content of the DNA was 64 mol%. On the basis of 16S rRNA gene sequence analysis, strain YSM-79T was determined to be a member of the family Halobacteriaceae, with the closest related genus being Halobacterium (94 % sequence identity). In addition, the rpoB′ gene sequence of strain YSM-79T had <88 % sequence similarity to those of other members of the family Halobacteriaceae. The results of phenotypic, chemotaxonomic and phylogenetic analysis suggested that strain YSM-79T should be placed in a new genus, Salarchaeum gen. nov., as a representative of Salarchaeum japonicum sp. nov. The type strain is YSM-79T ( = JCM 16327T  = CECT 7563T).


2011 ◽  
Vol 61 (4) ◽  
pp. 965-968 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Halophilic archaeal strain TBN37T was isolated from Taibei marine solar saltern near Lianyungang city of Jiangsu province, China. Cells were pleomorphic, flat and contained gas vesicles. Cells of strain TBN37T stained Gram-negative and the colonies were pink-pigmented. The strain was able to grow at 25–50 °C (optimum, 37–40 °C), with 1.4–5.1 M NaCl (optimum, 2.1 M NaCl), with 0–1.0 M MgCl2 (optimum, 0.01 M MgCl2) and at pH 6.0–9.0 (optimum, pH 7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of strain TBN37T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). On the basis of 16S rRNA gene sequence analysis, strain TBN37T was closely related to Haloplanus natans and Haloplanus vescus, with the same similarity of 97.4 %. The DNA G+C content of strain TBN37T is 64.1 mol%. DNA–DNA hybridization values between strain TBN37T and Haloplanus natans JCM 14081T and between strain TBN37T and Haloplanus vescus RO5-8T were 37.6 % and 42.1 %, respectively. It was concluded that strain TBN37T represents a novel species of the genus Haloplanus, for which the name Haloplanus aerogenes sp. nov. is proposed. The type strain is TBN37T ( = CGMCC 1.10124T  = JCM 16430T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4757-4762 ◽  
Author(s):  
Ying Sun ◽  
Zhaohui Guo ◽  
Qi Zhao ◽  
Qiyu Gao ◽  
QinJian Xie ◽  
...  

A Gram-stain-variable, rod-shaped, non-motile and endospore-forming bacterium, designated strain HZ1T, was isolated from a sample of bank side soil from Hangzhou city, Zhejiang province, PR China. On the basis of 16S rRNA gene sequence analysis, strain HZ1T was closely related to members of the genus Paenibacillus, sharing the highest levels of sequence similarity with Paenibacillus agarexedens DSM 1327T (94.4 %), Paenibacillus sputi KIT00200-70066-1T (94.4 %). Growth occurred at 15–42 °C (optimum 30–37 °C), pH 5.0–9.5 (optimum pH 7.0–8.0) and NaCl concentrations of up to 6.0 % (w/v) were tolerated (optimum 0.5 %). The dominant respiratory quinone was MK-7 and the DNA G+C content was 40.1 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids of strain HZ1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown lipids. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain HZ1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus ripae sp. nov. (type strain HZ1T = CCTCC AB 2014276T = LMG 28639T) is proposed.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4003-4007 ◽  
Author(s):  
Dong-Uk Kim ◽  
Hyosun Lee ◽  
Song-Gun Kim ◽  
Jae-Hyung Ahn ◽  
So Yoon Park ◽  
...  

A Gram-stain-negative, yellow-pigmented bacterial strain, designated PR1012KT, was isolated from a motor car evaporator core collected in Korea. Cells of the strain were facultatively anaerobic, non-spore-forming and rod-shaped. The strain grew at 10–40 °C (optimum, 25 °C), at pH 6.5–8.0 (optimum, pH 7.0–8.0) and in the presence of 0–1 % (w/v) NaCl. Phylogenetically, the strain was closely related to members of the genus Spirosoma (97.50–90.74 % 16S rRNA gene sequence similarities) and showed highest sequence similarity to Spirosoma panaciterrae DSM 21099T (97.50 %). Its predominant fatty acids included summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 1ω5c, iso-C15 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso B) and it had MK-7 as the major menaquinone. The polar lipids present included phosphatidylethanolamine, one unknown aminophospholipid, two unknown aminolipids and five unknown polar lipids. The DNA G+C content of this strain was 54 mol%. Based on phenotypic, genotypic and chemotaxonomic data, strain PR1012KT represents a novel species in the genus Spirosoma, for which the name Spirosoma aerolatum sp. nov. is proposed. The type strain is PR1012KT ( = KACC 17939T = NBRC 110794T).


Sign in / Sign up

Export Citation Format

Share Document