genomic relatedness
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Nemanja Kuzmanović ◽  
Camilla Fagorzi ◽  
Alessio Mengoni ◽  
Florent Lassalle ◽  
George C diCenzo

The alphaproteobacterial family Rhizobiaceae is highly diverse, with 168 species with validly published names classified into 17 genera with validly published names. Most named genera in this family are delineated based on genomic relatedness and phylogenetic relationships, but some historically named genera show inconsistent distribution and phylogenetic breadth. Most problematic is Rhizobium, which is notorious for being highly paraphyletic, as most newly described species in the family being assigned to this genus without consideration for their proximity to existing genera, or the need to create novel genera. In addition, many Rhizobiaceae genera lack synapomorphic traits that would give them biological and ecological significance. We propose a common framework for genus delimitation within the family Rhizobiaceae. We propose that genera in this family should be defined as monophyletic groups in a core-genome gene phylogeny, that are separated from related species using a pairwise core-proteome average amino acid identity (cpAAI) threshold of approximately 86%. We further propose that the presence of additional genomic or phenotypic evidence can justify the division of species into separate genera even if they all share greater than 86% cpAAI. Applying this framework, we propose to reclassify Rhizobium rhizosphaerae and Rhizobium oryzae into the new genus Xaviernesmea gen. nov. Data is also provided to support the recently proposed genus "Peteryoungia", and the reclassifications of Rhizobium yantingense as Endobacterium yantingense comb. nov., Rhizobium petrolearium as Neorhizobium petrolearium comb. nov., Rhizobium arenae as Pararhizobium arenae comb. nov., Rhizobium tarimense as Pseudorhizobium tarimense comb. nov., and Rhizobium azooxidefex as Mycoplana azooxidifex comb. nov. Lastly, we present arguments that the unification of the genera Ensifer and Sinorhizobium in Opinion 84 of the Judicial Commission is no longer justified by current genomic and phenotypic data. We thus argue that the genus Sinorhizobium is not illegitimate and now encompasses 17 species.


2021 ◽  
Vol 7 (35) ◽  
pp. eabg8042
Author(s):  
James W. Lightfoot ◽  
Mohannad Dardiry ◽  
Ata Kalirad ◽  
Stefano Giaimo ◽  
Gabi Eberhardt ◽  
...  

Resource polyphenisms, where single genotypes produce alternative feeding strategies in response to changing environments, are thought to be facilitators of evolutionary novelty. However, understanding the interplay between environment, morphology, and behavior and its significance is complex. We explore a radiation of Pristionchus nematodes with discrete polyphenic mouth forms and associated microbivorous versus cannibalistic traits. Notably, comparing 29 Pristionchus species reveals that reproductive mode strongly correlates with mouth-form plasticity. Male-female species exhibit the microbivorous morph and avoid parent-offspring conflict as indicated by genetic hybrids. In contrast, hermaphroditic species display cannibalistic morphs encouraging competition. Testing predation between 36 co-occurring strains of the hermaphrodite P. pacificus showed that killing inversely correlates with genomic relatedness. These empirical data together with theory reveal that polyphenism (plasticity), kin recognition, and relatedness are three major factors that shape cannibalistic behaviors. Thus, developmental plasticity influences cooperative versus competitive social action strategies in diverse animals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Janina Rahlff ◽  
Victoria Turzynski ◽  
Sarah P. Esser ◽  
Indra Monsees ◽  
Till L. V. Bornemann ◽  
...  

AbstractThe continental subsurface houses a major portion of life’s abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.


2021 ◽  
Author(s):  
Heng Zhou ◽  
Ming Yang ◽  
Qiong Xue ◽  
Shengjie Zhang ◽  
Jian Zhou ◽  
...  

Abstract A novel Gram-stain negative bacterium, designated IM2376T, was isolated from the sediment of Hutong Qagan Lake in Ordos, Inner Mongolia Autonomous Region of China. The strain IM2376T had the highest similarity with Roseinatronobacter thiooxidans DSM 13087T (96.18%) and Rhodobaca bogoriensis LBB1T (96.18%) of the family Rhodobacteraceae according to 16S rRNA gene sequence comparison. Genomic relatedness analyses showed that strain IM2376T was clearly distinguished from other species in the family Rhodobacteraceae, with average nucleotide identities, amino acid identities and in silico DNA-DNA hybridization values not more than 74.1%, 68.5% and 20.2%. The fatty acid was mainly composed of C18:1ω7c (64.86%), iso-C16:0 (16.33%) and C16: 1ω7c/C16:1ω6c (6.02%). The major polar lipid was diphosphatidyl glycerol, phosphatidylglycerol and phosphatidylcholine. The predominant ubiquinone was Q-10 (94.9%) and Q-11 (5.1%). The DNA G + C was 66 mol%. Based on all these results, strain IM2376T was considered to be a novel species of a new genus in the family Rhodobacteraceae, for which the name Rhabdonatronobacter sediminivivens gen. nov., sp. nov. is proposed. The type strain is IM2376T (= CGMCC 1.17852T).


Author(s):  
Damien Thiry ◽  
Frédéric Billen ◽  
Filip Boyen ◽  
Jean-Noël Duprez ◽  
Hélène Quenault ◽  
...  

2021 ◽  
Author(s):  
Ronald de Vlaming ◽  
Eric A.W. Slob ◽  
Philip R Jansen ◽  
Alain Dagher ◽  
Philipp D. Koellinger ◽  
...  

Human variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce multivariate genomic-relatedness restricted maximum likelihood (MGREML) and provide estimates of the heritability of grey-matter volume in 74 regions of interest (ROIs) in the brain. We map genetic correlations between these ROIs and health-relevant behavioral outcomes including intelligence. We find four genetically distinct clusters in the brain that are aligned with standard anatomical subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain morphology which suggests trait-specific relevance of ROIs.


2021 ◽  
Author(s):  
Martinique Frentrup ◽  
Nadine Thiel ◽  
Vera Junker ◽  
Wiebke Behrens ◽  
Steffen Münch ◽  
...  

SummaryDuring a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (formerly, Clostridium) difficile in broiler feces, manure, dust, and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than two years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.


Author(s):  
Scott Van Nguyen ◽  
Scott A. Cunningham ◽  
Patricio Jeraldo ◽  
Anthony Tran ◽  
Robin Patel

The taxonomic position of Yersinia kristensenii subsp. rochesterensis and Yersinia occitanica was re-evaluated by genomic analysis. Average nucleotide identity (ANI), digital DNA–DNA hybridization values, and phylogenetic analyses of the type strains indicate that Y. kristensenii subsp. rochesterensis and Y. occitanica are the same genospecies. Additionally, the overall genomic relatedness index (OGRI) values reveal that Y. kristensenii subsp. rochesterensis should be elevated to species status as Yersinia rochesterensis sp. nov.


Author(s):  
Xinyi Guo ◽  
Terezie Mandáková ◽  
Karolína Trachtová ◽  
Barış Özüdoğru ◽  
Jianquan Liu ◽  
...  

Abstract Pervasive hybridization and whole genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. While frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (c. 60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring post-polyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.


Sign in / Sign up

Export Citation Format

Share Document