scholarly journals Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt

2011 ◽  
Vol 61 (9) ◽  
pp. 2266-2270 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Syuhei Nagaoka ◽  
...  

Strain YSM-79T was isolated from commercial salt made from seawater in Yonaguni island, Okinawa, Japan. The strain is an aerobic, Gram-negative, chemo-organotrophic and extremely halophilic archaeon. Cells are short rods that lyse in distilled water. Growth occurs at 1.5–5.3 M NaCl (optimum 2.5–3.0 M), pH 5.0–8.8 (optimum pH 5.2–6.3) and 20–55 °C (optimum 40 °C). Mg2+ is required for growth, with maximum growth at 200–300 mM Mg2+. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, sulfated diglycosyl diether-1 and five unidentified glycolipids. The G+C content of the DNA was 64 mol%. On the basis of 16S rRNA gene sequence analysis, strain YSM-79T was determined to be a member of the family Halobacteriaceae, with the closest related genus being Halobacterium (94 % sequence identity). In addition, the rpoB′ gene sequence of strain YSM-79T had <88 % sequence similarity to those of other members of the family Halobacteriaceae. The results of phenotypic, chemotaxonomic and phylogenetic analysis suggested that strain YSM-79T should be placed in a new genus, Salarchaeum gen. nov., as a representative of Salarchaeum japonicum sp. nov. The type strain is YSM-79T ( = JCM 16327T  = CECT 7563T).

2011 ◽  
Vol 61 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Sun-Jung Kim ◽  
Sang-Seob Lee

A Gram-positive, non-motile bacterium, designated KSL51201-037T, was isolated from Anyang stream, Republic of Korea, and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL51201-037T belonged to the family Microbacteriaceae of the class Actinobacteria and exhibited 96.9 % gene sequence similarity to Labedella gwakjiensis KSW2-17T, 96.0 % to Leifsonia ginsengi wged11T and 95.9 % to Microterricola viridarii KV-677T. The G+C content of the genomic DNA was 72.7 mol%. Strain KSL51201-037T had l-2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, MK-11 and MK-12 as the major menaquinones, anteiso-C15 : 0 (47.8 %) and iso-C16 : 0 (24.0 %) as the major fatty acids and phosphatidylglycerol and three unknown phospholipids as the major polar lipids. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, it is suggested that strain KSL51201-037T represents a novel species of a new genus in the family Microbacteriaceae for which the name Amnibacterium kyonggiense gen. nov., sp. nov. is proposed. The type strain of the type species is KSL51201-037T (=KEMC 51201-037T=JCM 16463T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2275-2279 ◽  
Author(s):  
Mostafa S. Elshahed ◽  
Kristen N. Savage ◽  
Aharon Oren ◽  
M. Carmen Gutierrez ◽  
Antonio Ventosa ◽  
...  

A pleomorphic, extremely halophilic archaeon (strain M6T) was isolated from a sulfide- and sulfur-rich spring in south-western Oklahoma (USA). It formed small (0·8–1·0 mm), salmon pink, elevated colonies on agar medium. The strain grew in a wide range of NaCl concentrations (6 % to saturation) and required at least 1 mM Mg2+ for growth. Strain M6T was able to reduce sulfur to sulfide anaerobically. 16S rRNA gene sequence analysis indicated that strain M6T belongs to the family Halobacteriaceae, genus Haloferax; it showed 96·7–98·0 % similarity to other members of the genus with validly published names and 89 % similarity to Halogeometricum borinquense, its closest relative outside the genus Haloferax. Polar lipid analysis and DNA G+C content further supported placement of strain M6T in the genus Haloferax. DNA–DNA hybridization values, as well as biochemical and physiological characterization, allowed strain M6T to be differentiated from other members of the genus Haloferax. A novel species, Haloferax sulfurifontis sp. nov., is therefore proposed to accommodate the strain. The type strain is M6T (=JCM 12327T=CCM 7217T=DSM 16227T=CIP 108334T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Two extremely halophilic archaeal strains, TBN21T and TBN49, were isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-negative and colonies were red. Strains TBN21T and TBN49 were able to grow at 25–50 °C (optimum 37 °C), at 1.4–5.1 M NaCl (optimum 3.4–3.9 M) and at pH 5.5–9.5 (optimum pH 7.0–7.5) and neither strain required Mg2+ for growth. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of the two strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and eight glycolipids; three of these glycolipids (GL3, GL4 and GL5) were chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1), galactosyl mannosyl glucosyl diether (TGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Phylogenetic analysis revealed that strains TBN21T and TBN49 formed a distinct clade with their closest relative, Halobaculum gomorrense JCM 9908T (89.0–89.5 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains TBN21T and TBN49 were 64.8 and 62.7 mol%, respectively. DNA–DNA hybridization between strains TBN21T and TBN49 was 90.1 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains TBN21T and TBN49 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halolamina pelagica gen. nov., sp. nov. is proposed. The type strain of Halolamina pelagica is TBN21T ( = CGMCC 1.10329T  = JCM 16809T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 469-474 ◽  
Author(s):  
Ying Liu ◽  
Liang-Zi Liu ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Fang-Jun Qi ◽  
...  

A Gram-stain-negative, strictly aerobic and heterotrophic bacterial strain, designed strain D1T, was isolated from a recirculating mariculture system in Tianjin, China. Its taxonomic position was determined using a polyphasic approach. Cells of strain D1T were non-flagellated short rods, 0.3–0.5 µm wide and 0.5–1.0 µm long. Growth was observed at 15–30 °C (optimum, 25 °C), at pH 5.5–9.0 (optimum, pH 6.5–7.0) and in the presence of 1–8 % (w/v) NaCl (optimum, 2–3 %). Cells contained carotenoid pigments but not flexirubin-type pigments. Strain D1T contained MK-6 as the sole menaquinone and phosphatidylethanolamine (PE) as the sole phospholipid and four unidentified lipids. The major cellular fatty acids (>10 %) were iso-C15 : 0 (23.2 %), iso-C17 : 0 3-OH (15.2 %), C16 : 1ω7c/C16 : 1ω6c (14.3 %), iso-C15 : 0 3-OH (13.5 %) and iso-C15 : 1 G (10.8 %). 16S rRNA gene sequence analyses indicated that strain D1T belonged to the family Flavobacteriaceae and showed closest phylogenetic relationship to the genus Lutibacter , with highest sequence similarity to Lutibacter aestuarii MA-My1T (92.2 %). The DNA G+C content of strain D1T was 35.9 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D1T was considered to represent a novel species in a new genus of the family Flavobacteriaceae , for which the name Wenyingzhuangia marina gen. nov., sp. nov. is proposed. The type strain of the type species is D1T ( = CGMCC 1.12162T = JCM 18494T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2529-2534 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Toru Mizuki ◽  
Akinobu Echigo ◽  
...  

Strain YSM-123T was isolated from commercial salt made from Japanese seawater in Niigata prefecture. Optimal NaCl and Mg2+ concentrations for growth were 4.0–4.5 M and 5 mM, respectively. The isolate was a mesophilic and slightly alkaliphilic haloarchaeon, whose optimal growth temperature and pH were 37 °C and pH 8.0–9.0. Phylogenetic analysis based on 16S rRNA gene sequence analysis suggested that strain YSM-123T is a member of the phylogenetic group defined by the family Halobacteriaceae, but there were low similarities to type strains of other genera of this family (≤90 %); for example, Halococcus (similarity <89 %), Halostagnicola (<89 %), Natronolimnobius (<89 %), Halobiforma (<90 %), Haloterrigena (<90 %), Halovivax (<90 %), Natrialba (<90 %), Natronobacterium (<90 %) and Natronococcus (<90 %). The G+C content of the DNA was 63 mol%. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, disulfated diglycosyl diether and an unknown glycolipid. On the basis of the data presented, we propose that strain YSM-123T should be placed in a new genus and species, Natronoarchaeum mannanilyticum gen. nov., sp. nov. The type strain of Natronoarchaeum mannanilyticum is strain YSM-123T (=JCM 16328T =CECT 7565T).


Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Cindy Snauwaert ◽  
Marc Vancanneyt ◽  
...  

Three novel heterotrophic, Gram-negative, yellow-pigmented, aerobic, gliding, oxidase- and catalase-positive bacteria were isolated from algae collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied represented members of the family Flavobacteriaceae and showed 93·5–93·8 % similarity with their closest relative, Psychroserpens burtonensis. The DNA G+C content of the strains was 34–37 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1, iso-C16 : 0-3OH and iso-C17 : 0-3OH. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the newly described bacteria have been assigned to the new genus Winogradskyella gen. nov., as Winogradskyella thalassocola sp. nov. (type strain, KMM 3907T=KCTC 12221T=LMG 22492T=DSM 15363T), Winogradskyella epiphytica sp. nov. (type strain, KMM 3906T=KCTC 12220T=LMG 22491T=CCUG 47091T) and Winogradskyella eximia sp. nov. (type strain, KMM 3944T (=KCTC 12219T=LMG 22474T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4757-4762 ◽  
Author(s):  
Ying Sun ◽  
Zhaohui Guo ◽  
Qi Zhao ◽  
Qiyu Gao ◽  
QinJian Xie ◽  
...  

A Gram-stain-variable, rod-shaped, non-motile and endospore-forming bacterium, designated strain HZ1T, was isolated from a sample of bank side soil from Hangzhou city, Zhejiang province, PR China. On the basis of 16S rRNA gene sequence analysis, strain HZ1T was closely related to members of the genus Paenibacillus, sharing the highest levels of sequence similarity with Paenibacillus agarexedens DSM 1327T (94.4 %), Paenibacillus sputi KIT00200-70066-1T (94.4 %). Growth occurred at 15–42 °C (optimum 30–37 °C), pH 5.0–9.5 (optimum pH 7.0–8.0) and NaCl concentrations of up to 6.0 % (w/v) were tolerated (optimum 0.5 %). The dominant respiratory quinone was MK-7 and the DNA G+C content was 40.1 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids of strain HZ1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown lipids. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain HZ1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus ripae sp. nov. (type strain HZ1T = CCTCC AB 2014276T = LMG 28639T) is proposed.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 501-505 ◽  
Author(s):  
Jonathan Kennedy ◽  
Lekha Menon Margassery ◽  
Niall D. O’Leary ◽  
Fergal O’Gara ◽  
John Morrissey ◽  
...  

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92VT, was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92VT clustered with members of the family Flavobacteriaceae , the closest member being Aquimarina latercula NCIMB 1399T, with a gene sequence similarity of 97.5 %. Strain 92VT required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C17 : 1ω9c and iso-C15 : 0 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92VT represents a novel species of the genus Aquimarina , for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92VT ( = NCIMB 14723T = DSM 25232T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1144-1148 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
P. Corral ◽  
M. Kamekura ◽  
A. Ventosa

Two halophilic archaea, strains EN-2T and SH-4, were isolated from the saline lakes Erliannor and Shangmatala, respectively, in Inner Mongolia, China. Cells were strictly aerobic, motile rods. Colonies were red. Strains EN-2T and SH-4 were able to grow at 25–50 °C (optimum 35–40 °C), with 2.5–5.0 M NaCl (optimum 3.4 M NaCl) and at pH 6.0–9.0 (optimum pH 7.5). MgCl2 was not required for growth. Cells lysed in distilled water and the lowest NaCl concentration that prevented cell lysis was 12 % (w/v). On the basis of 16S rRNA gene sequence analysis, strains EN-2T and SH-4 were closely related to Halorubrum cibi B31T (97.9 and 98.0 % similarity, respectively), Hrr. tibetense 8W8T (97.3 and 97.7 %), Hrr. alkaliphilum DZ-1T (96.8 and 97.1 %), Hrr. luteum CGSA15T (96.8 and 97.0 %) and Hrr. lipolyticum 9-3T (96.8 and 97.0 %). DNA–DNA hybridization showed that strains EN-2T and SH-4 did not belong to the same species as any of these strains (≤45 % DNA–DNA relatedness) but that they are members of the same species (>70 % DNA–DNA relatedness). Polar lipid analysis revealed that strains EN-2T and SH-4 contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diethers and several unidentified glycolipids. The DNA G+C content of both isolates was 62.1 mol%. It was concluded that strains EN-2T and SH-4 represent a novel species of the genus Halorubrum, for which the name Halorubrum aquaticum sp. nov. is proposed. The type strain is EN-2T ( = CECT 7174T  = CGMCC 1.6377T  = JCM 14031T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document