scholarly journals Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete

2007 ◽  
Vol 57 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Spyridon Ntougias ◽  
Constantinos Fasseas ◽  
Georgios I. Zervakis

A novel, Gram-negative, non-motile, non-sporulating, rod-shaped bacterium isolated from a viscous two-phase olive-oil mill waste (‘alpeorujo’) is described. The strain, designated AW-6T, is an obligate aerobe, forming irregular, pigmented creamy white colonies. The pH and temperature ranges for growth were pH 5–8 and 5–45 °C, with optimal pH and temperature for growth of pH 6–7 and 28–32 °C, respectively. Strain AW-6T was chemo-organotrophic and utilized mostly d(+)-glucose, protocatechuate and d(+)-xylose, followed by l-cysteine, d(−)-fructose, d(+)-galactose, l-histidine, lactose, sorbitol and sucrose. Menaquinone-7 was detected in the respiratory chain of strain AW-6T. The major fatty acids of strain AW-6T were C16 : 1 ω7c and/or iso-C15 : 0 2-OH, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0. The closest phylogenetic relative of strain AW-6T was clone BIti35 (89.7 % 16S rRNA gene sequence similarity), while Sphingobacterium thalpophilum DSM 11723T was the closest recognized relative within the Sphingobacteriaceae (88.2 % similarity). Strain AW-6T showed a low level of DNA–DNA relatedness to S. thalpophilum DSM 11723T (33.8–37.0 %). The DNA G+C content of strain AW-6T was 45.6 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain AW-6T from members of the genera Sphingobacterium and Pedobacter. Thus, strain AW-6T is considered to represent a novel species of a new genus within the family Sphingobacteriaceae, for which the name Olivibacter sitiensis gen. nov., sp. nov. is proposed. The type strain is AW-6T (=DSM 17696T=CECT 7133T).

2011 ◽  
Vol 61 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Sun-Jung Kim ◽  
Sang-Seob Lee

A Gram-positive, non-motile bacterium, designated KSL51201-037T, was isolated from Anyang stream, Republic of Korea, and was characterized using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain KSL51201-037T belonged to the family Microbacteriaceae of the class Actinobacteria and exhibited 96.9 % gene sequence similarity to Labedella gwakjiensis KSW2-17T, 96.0 % to Leifsonia ginsengi wged11T and 95.9 % to Microterricola viridarii KV-677T. The G+C content of the genomic DNA was 72.7 mol%. Strain KSL51201-037T had l-2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, MK-11 and MK-12 as the major menaquinones, anteiso-C15 : 0 (47.8 %) and iso-C16 : 0 (24.0 %) as the major fatty acids and phosphatidylglycerol and three unknown phospholipids as the major polar lipids. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, it is suggested that strain KSL51201-037T represents a novel species of a new genus in the family Microbacteriaceae for which the name Amnibacterium kyonggiense gen. nov., sp. nov. is proposed. The type strain of the type species is KSL51201-037T (=KEMC 51201-037T=JCM 16463T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Two extremely halophilic archaeal strains, TBN21T and TBN49, were isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-negative and colonies were red. Strains TBN21T and TBN49 were able to grow at 25–50 °C (optimum 37 °C), at 1.4–5.1 M NaCl (optimum 3.4–3.9 M) and at pH 5.5–9.5 (optimum pH 7.0–7.5) and neither strain required Mg2+ for growth. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of the two strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and eight glycolipids; three of these glycolipids (GL3, GL4 and GL5) were chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1), galactosyl mannosyl glucosyl diether (TGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Phylogenetic analysis revealed that strains TBN21T and TBN49 formed a distinct clade with their closest relative, Halobaculum gomorrense JCM 9908T (89.0–89.5 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains TBN21T and TBN49 were 64.8 and 62.7 mol%, respectively. DNA–DNA hybridization between strains TBN21T and TBN49 was 90.1 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains TBN21T and TBN49 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halolamina pelagica gen. nov., sp. nov. is proposed. The type strain of Halolamina pelagica is TBN21T ( = CGMCC 1.10329T  = JCM 16809T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2345-2350 ◽  
Author(s):  
Yusuke Kondo ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1T, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1T were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg2+ was not required for growth. The major polar lipids of the isolate were C20C20 and C20C25 archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1T was most closely related to those of the species of the genus Halorubrum, Halorubrum luteum CECT 7303T (95.9 % similarity), Halorubrum alkaliphilum JCM 12358T (95.3 %), Halorubrum kocurii JCM 14978T (95.3 %) and Halorubrum lipolyticum JCM 13559T (95.3 %). The rpoB′ gene sequence of strain MK13-1T had < 90 % sequence similarity to those of other members of the genus Halorubrum. Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1T may represent a novel species of the genus Halorubrum, for which the name Halorubrum gandharaense sp. nov. is proposed, with the type strain MK13-1T ( = JCM 17823T = CECT 7963T).


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2005 ◽  
Vol 55 (2) ◽  
pp. 747-751 ◽  
Author(s):  
Zubair Aslam ◽  
Wan-Taek Im ◽  
Myung Kyum Kim ◽  
Sung-Taik Lee

A Gram-negative, rod-shaped, non-spore-forming bacterium (designated strain Kw05T) was isolated from granules used in the wastewater treatment plant of a beer-brewing factory in Kwang-Ju, Republic of Korea. On the basis of 16S rRNA gene sequence similarity, strain Kw05T was shown to belong to the family Flavobacteriaceae, and was most closely related to Flavobacterium limicola (96·6 %), Flavobacterium hibernum (96·3 %), Flavobacterium hydatis (96·1 %) and Flavobacterium xinjiangense (96·1 %). The G+C content of the genomic DNA of strain Kw05T was 36·2 mol%, within the range of 32–37 mol% for the genus Flavobacterium. Chemotaxonomic data (major menaquinone MK-6; major fatty acids iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C17 : 1 ω9c) supported the classification of strain Kw05T within the genus Flavobacterium. Kw05T therefore represents a novel species, for which the name Flavobacterium granuli sp. nov. is proposed. The type strain is Kw05T (=KCTC 12201T=IAM 15099T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


Author(s):  
P. Kämpfer ◽  
N. Lodders ◽  
E. Falsen

Three bacterial strains, designated CCUG 51397T, CCUG 53736 and CCUG 53920, isolated from water samples taken at different locations in southern Sweden were studied to determine their taxonomic position using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences showed that these bacteria had <93 % sequence similarity to all described species of the genera Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Chitinophaga. The three organisms grouped most closely with Sediminibacterium salmoneum NJ-44T but showed only 92.5 % sequence similarity to this strain, the only recognized species of this genus. The fatty acid profiles showed large amounts of iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G with smaller amounts of iso-C15 : 0 3-OH, iso-C16 : 0 3-OH and other fatty acids, which differentiated the novel strains from related genera. Biochemical tests performed on strains CCUG 51397T, CCUG 53736 and CCUG 53920 also gave different results from those of Sediminibacterium salmoneum NJ-44T and other related genera. Based on this evidence, strains CCUG 51397T, CCUG 53736 and CCUG 53920 represent a novel species of a new genus, for which the name Hydrotalea flava gen. nov., sp. nov. is proposed. The type strain of Hydrotalea flava is CCUG 51397T (=CCM 7760T). A formal allocation of the genera Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Chitinophaga to the family Chitinophagaceae fam. nov. is also proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4868-4872 ◽  
Author(s):  
Yan Zhao ◽  
Qingmei Liu ◽  
Myung-Suk Kang ◽  
Fengxie Jin ◽  
Hongshan Yu ◽  
...  

A Gram-reaction-negative, aerobic, non-motile and rod-shaped bacterial strain designated Gsoil 636T was isolated from soil of a ginseng cultivation field in Pocheon Province, South Korea and its taxonomic position was investigated using a polyphasic approach. Gsoil 636T grew at 18–30 °C and at pH 6.0–8.0 on R2A medium. Gsoil 636T possessed β-glucosidase activity, which was responsible for its ability to transform ginsenoside Rb1 (ones of the dominant active components of ginseng) to F2. On the basis of 16S rRNA gene sequence similarity, Gsoil 636T was shown to belong to the family Chitinophagaceae and to be related to Flavisolibacter ginsengiterrae Gsoil 492T (96.7 % sequence similarity), Flavisolibacter ginsengisoli Gsoil 643T (96.6 %) and Flavisolibacter rigui 02SUJ3T (96.6 %). The G+C content of the genomic DNA was 48.9 %. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. DNA and chemotaxonomic data supported the affiliation of Gsoil 636T to the genus Flavisolibacter. Gsoil 636T could be differentiated genotypically and phenotypically from the species of the genus Flavisolibacter with validly published names. The isolate therefore represents a novel species, for which the name Flavisolibacter ginsenosidimutans sp. nov. is proposed, with the type strain Gsoil 636T (KCTC 22818T = JCM 18197T = KACC 14277T).


Sign in / Sign up

Export Citation Format

Share Document