scholarly journals Meganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge

2006 ◽  
Vol 56 (8) ◽  
pp. 1865-1868 ◽  
Author(s):  
Trine R. Thomsen ◽  
Linda L. Blackall ◽  
Marilena Aquino de Muro ◽  
Jeppe L. Nielsen ◽  
Per H. Nielsen

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation. Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426T, 89.8 % sequence similarity). In pure culture, the cells (1.5–2.0 μm) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 °C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C18 : 1 ω7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C19 : 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G+C content of the DNA is 42.9 mol% (for strain Gr1T). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1T and Gr10; 97.7 % identical) showed 71.5 % DNA–DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1T (=DSM 15528T=ATCC BAA-740T).

2007 ◽  
Vol 57 (11) ◽  
pp. 2600-2603 ◽  
Author(s):  
Shipeng Lu ◽  
Jung Ro Lee ◽  
Seung Hyun Ryu ◽  
Bok Sil Chung ◽  
Woo-Seok Choe ◽  
...  

A long, Gram-negative, rod-shaped bacterium, designated strain EMB13T, was isolated from a wastewater treatment plant in Korea. The isolate was strictly aerobic and non-motile. The strain grew optimally at 30–35 °C and pH 7.5–8.0, and the predominant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), C16 : 1 ω5c and iso-C17 : 0 3-OH. The strain contained a large amount of phosphatidylethanolamine and small amounts of phosphatidylcholine and an unknown phospholipid as the polar lipids. The G+C content of the genomic DNA was 40.1 mol% and the major isoprenoid quinone was menaquinone-7. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EMB13T belonged to the genus Runella and was most closely related to Runella limosa EMB111T, with a 16S rRNA gene sequence similarity of 97.1 %. DNA–DNA relatedness between strain EMB13T and R. limosa EMB111T was approximately 25 %. On the basis of phenotypic, chemotaxonomic and molecular data, it is clear that strain EMB13T represents a novel species within the genus Runella, for which the name Runella defluvii sp. nov. is proposed. The type strain is EMB13T (=KCTC 12614T =DSM 17976T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1065-1068 ◽  
Author(s):  
A. F. Yassin ◽  
Fo-Ting Shen ◽  
H. Hupfer ◽  
A. B. Arun ◽  
Wei-An Lai ◽  
...  

The taxonomic status of a bacterial isolate from the sludge of a wastewater treatment plant was characterized by using a polyphasic taxonomic approach. Chemotaxonomic investigations revealed the presence of cell-wall chemotype IV, short-chain mycolic acids that co-migrated with those extracted from members of the genus Gordonia, fatty acids C16 : 0 and C18 : 0 (found by pyrolysis gas chromatography) and a dihydrogenated menaquinone with nine isoprene units [MK-9(H2)] as the predominant menaquinone. The genus assignment was confirmed by 16S rRNA gene sequencing. Comparative analysis of the 16S rRNA gene sequence showed that the novel isolate constitutes a hitherto unknown subline within the genus Gordonia, displaying 95.9 to 97.6 % gene sequence similarity to the recognized species of the genus. The novel isolate was distinguished from the type strains of phylogenetically related species by using a set of phenotypic features. The genotypic and phenotypic data show that the new strain merits classification as a novel species of the genus Gordonia, for which the name Gordonia malaquae sp. nov. is proposed. The type strain is IMMIB WWCC-22T (=DSM 45064T=CCUG 53555T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2026-2030 ◽  
Author(s):  
Seung Hyun Ryu ◽  
Minjeong Park ◽  
Yeji Jeon ◽  
Jung Ro Lee ◽  
Woojun Park ◽  
...  

A Gram-negative bacterium, designated strain EMB34T, was isolated from a wastewater treatment plant in Korea. Growth was observed between 10 and 40 °C (optimum, 25–35 °C) and between pH 6.0 and 9.5 (optimum, pH 7.5–8.0). The cells were non-motile rods, linked with extracellular fibrils. The predominant fatty acids of strain EMB34T were iso-C15 : 0, C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH and iso-C15 : 0 3-OH and the strain contained phosphatidylethanolamine and phosphatidylinositol as the polar lipids. The G+C content of the genomic DNA was 34.2 mol% and the major quinone was menaquinone-6. Comparative 16S rRNA gene sequence analyses showed that strain EMB34T formed a distinct phyletic line within the genus Flavobacterium. The levels of 16S rRNA gene sequence similarity with other Flavobacterium species were less than 94.5 %. On the basis of phenotypic, chemotaxonomic and molecular data, it is clear that strain EMB34T represents a novel species within the genus Flavobacterium, for which the name Flavobacterium filum sp. nov. is proposed. The type strain is EMB34T (=KCTC 12610T=DSM 17961T).


2003 ◽  
Vol 69 (12) ◽  
pp. 7354-7363 ◽  
Author(s):  
Rakia Chouari ◽  
Denis Le Paslier ◽  
Patrick Daegelen ◽  
Philippe Ginestet ◽  
Jean Weissenbach ◽  
...  

ABSTRACT We examined anoxic and aerobic basins and an anaerobic digestor of a municipal wastewater treatment plant for the presence of novel planctomycete-like diversity. Three 16S rRNA gene libraries were constructed by using a 16S rRNA-targeted universal reverse primer and a forward PCR primer specific for Planctomycetes. Phylogenetic analysis of 234 16S rRNA gene sequences defined 110 operational taxonomic units. The majority of these sequences clustered with the four known genera, Pirellula (32%), Planctomyces (18.4%), Gemmata (3.8%), and Isosphaera (0.4%). More interestingly, 42.3% of the sequences appeared to define two distantly separated monophyletic groups. The first group, represented by 35.5% of the sequences, was related to the Planctomyces group and branched as a monophyletic cluster. It exhibited between 11.9 and 20.3% 16S rRNA gene sequence dissimilarity in comparisons with cultivated planctomycetes. The second group, represented by 6.8% of the sequences, was deeply rooted within the Planctomycetales tree. It was distantly related to the anammox sequences (level of dissimilarity, 20.3 to 24.4%) and was a monophyletic cluster. The retrieved sequences extended the intralineage phylogenetic depth of the Plantomycetales from 23 to 30.6%. The lineages described here may have a broad diversity of undiscovered biochemical and metabolic novelty. We developed a new 16S rRNA-targeted oligonucleotide probe and localized members of one of the phylogenetic groups using the fluorescent in situ hybridization technique. Our results indicate that activated sludge contains very diverse representatives of this group, which grow under aerobic and anoxic conditions and even under anaerobic conditions. The majority of species in this group remain poorly characterized.


2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2005 ◽  
Vol 55 (2) ◽  
pp. 747-751 ◽  
Author(s):  
Zubair Aslam ◽  
Wan-Taek Im ◽  
Myung Kyum Kim ◽  
Sung-Taik Lee

A Gram-negative, rod-shaped, non-spore-forming bacterium (designated strain Kw05T) was isolated from granules used in the wastewater treatment plant of a beer-brewing factory in Kwang-Ju, Republic of Korea. On the basis of 16S rRNA gene sequence similarity, strain Kw05T was shown to belong to the family Flavobacteriaceae, and was most closely related to Flavobacterium limicola (96·6 %), Flavobacterium hibernum (96·3 %), Flavobacterium hydatis (96·1 %) and Flavobacterium xinjiangense (96·1 %). The G+C content of the genomic DNA of strain Kw05T was 36·2 mol%, within the range of 32–37 mol% for the genus Flavobacterium. Chemotaxonomic data (major menaquinone MK-6; major fatty acids iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C17 : 1 ω9c) supported the classification of strain Kw05T within the genus Flavobacterium. Kw05T therefore represents a novel species, for which the name Flavobacterium granuli sp. nov. is proposed. The type strain is Kw05T (=KCTC 12201T=IAM 15099T).


Sign in / Sign up

Export Citation Format

Share Document