scholarly journals Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules

2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3950-3957 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Margo Cnockaert ◽  
Julie K. Ardley ◽  
Garth Maker ◽  
Ron Yates ◽  
...  

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia , with the representative strain WSM5005T being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia . Results of DNA–DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005T = LMG 27175T = HAMBI 3357T) is proposed.

Author(s):  
Peter Kämpfer ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Meina Neumann-Schaal ◽  
Alexis Criscuolo ◽  
...  

A Gram-positive, non-spore-forming actinobacterium (IMT-300T) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300T was shown to belong to the genus Leucobacter and was closely related to the type strain of ‘Leucobacter margaritiformis’ L1T (97.8%). Similarity to all other type strains of Leucobacter species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the IMT-300T genome assembly and those of the closest relative Leucobacter type strain were 81.4 and 23.3 % ( Leucobacter chironomi ), respectively. The peptidoglycan of strain IMT-300T contained l-2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, d- and l-alanine and d-glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300T contained the major fatty acids C15 : 0 anteiso, C16 : 0 iso and C17 : 0 anteiso, like other members of the genus Leucobacter . The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300T from the most closely related Leucobacter species. Strain IMT-300T represents a novel Leucobacter species, for which we propose the name Leucobacter soli sp. nov., with the type strain IMT-300T (CIP 111803T=DSM 110505T=CCM 9020T=LMG 31600T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 496-501 ◽  
Author(s):  
Dong-Shan An ◽  
Qing-Mei Liu ◽  
Hyung-Gwan Lee ◽  
Mi-Seon Jung ◽  
Sun-Chan Kim ◽  
...  

Two novel bacteria, designated strains Gsoil 634T and Dae 20T, were isolated in South Korea from soil of a ginseng field and freshwater sediment, respectively and were characterized by a polyphasic approach to clarify their taxonomic positions. Phylogenetic analysis based on 16S rRNA gene sequences indicated that, although they probably represented two distinct species (indicated by a sequence similarity of 96.6 %), both strain Gsoil 634T and strain Dae 20T belonged to the genus Sphingomonas and were most closely related to ‘Sphingomonas humi’ PB323 (97.8 % and 96.7 % sequence similarity, respectively), Sphingomonas kaistensis PB56T (96.8 % and 96.7 %), Sphingomonas astaxanthinifaciens TDMA-17T (96.6 % and 95.4 %) and Sphingomonas jaspsi TDMA-16T (95.6 % and 95.8 %). For both novel strains, the major ubiquinone was Q-10, the major polyamine was homospermidine, the major cellular fatty acids included summed feature 7 (C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t), C17 : 1ω6c and C16 : 0, and the polar lipids included sphingoglycolipid. These chemotaxonomic data supported the affiliation of both strains to the genus Sphingomonas . However, the DNA–DNA relatedness value between strain Gsoil 634T and ‘Sphingomonas humi’ PB323T was 31 %. Moreover, the results of physiological and biochemical tests allowed the phenotypic differentiation of strains Gsoil 634T and Dae 20T from established members of the genus Sphingomonas . Based on these data, the two isolates represent two novel species in the genus Sphingomonas , for which the names Sphingomonas ginsengisoli sp. nov. (type strain Gsoil 634T = KCTC 12630T = DSM 18094T = LMG 23739T) and Sphingomonas sediminicola sp. nov. (type strain Dae 20T  = KCTC 12629T = DSM 18106T = LMG 23592T) are proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3419-3426 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Heng Wee Tan ◽  
Peter B. Heenan ◽  
Mitchell Andrews ◽  
Anne Willems

In total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8–99.9 %), Mesorhizobium huakuii IAM 14158T (99.8–99.9 %), Mesorhizobium loti USDA 3471T (99.5–99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6–99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8–99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA–DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3755-3759 ◽  
Author(s):  
Noriko Shinozaki-Kuwahara ◽  
Masanori Saito ◽  
Masatomo Hirasawa ◽  
Kazuko Takada

Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642T and Streptococcus orisuis NUM 1001T as their closest phylogenetic neighbours with 98.2 and 96.9 % gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7 %. DNA–DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus . On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101T ( = JCM 19285T = DSM 27377T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2405-2409 ◽  
Author(s):  
A. Srinivas ◽  
K. Rahul ◽  
Ch. Sasikala ◽  
Y. Subhash ◽  
E. V. V. Ramaprasad ◽  
...  

A Gram-stain-positive, oxidase-negative, starch-hydrolysing, actinobacterium (strain JC82T) was isolated from a soda lake in Lonar, India. Based on 16S rRNA gene sequence similarity studies, strain JC82T belonged to the genus Georgenia and was most closely related to Georgenia muralis 1A-CT (96.8 %) and other members of the genus Georgenia (<96.5 %). The DNA G+C content of strain JC82T was 73.4 mol%. The cell-wall amino acids were alanine, glutamic acid and lysine with peptidoglycan type A4α. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, an unidentified lipid (L1) and an unidentified glycolipid (GL3). The predominant isoprenoid quinone was menaquinone MK-8(H4). Anteiso-C15 : 0 was the predominant fatty acid and significant proportions of iso-C14 : 0, C14 : 0, C16 : 0, iso-C15 : 0 and iso-C16 : 0 were also detected. Strain JC82T produced thermostable alkaline amylase. The results of physiological and biochemical tests allowed a clear phenotypic differentiation of strain JC82T from all other members of the genus Georgenia . Based on these data, strain JC82T represents a novel species of the genus Georgenia , for which the name Georgenia satyanarayanai sp. nov. is proposed. The type strain is JC82T ( = KCTC 19802T = NBRC 107612T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3309-3315 ◽  
Author(s):  
Chaolan Liu ◽  
Yidong Guo ◽  
Li Li ◽  
Xiwei Wang ◽  
Jiafu Lin ◽  
...  

A novel actinobacterium, designated strain H14505T, was isolated from a soil sample collected in Hong Yuan, Sichuan, southwest PR China. The temperature, pH and NaCl ranges for growth were determined to be 15–35 °C (optimum, 28 °C), 6.0–8.0 (optimum, pH 7.0) and 0–2 % (w/v; optimum without NaCl), respectively. The polar lipdis detected for strain H14505T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycolipid and four unidentified lipids. The predominant menaquinones of strain H14505T were MK-9(H4) and MK-9(H6), and the prevalent fatty acids (>10 %) were C18 : 1 ω9c, C17 : 1 ω8c, summed feature 5 (anteiso-C18 : 0/ C18 : 2 ω6,9c) and C16 : 0. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences indicated that strain H14505T showed high similarity to Catellatospora vulcania NEAU-JM1T (99.0 %) and Catellatospora paridis NEAU-CL2T (99.0 %), and formed a monophyletic clade within the the genus Catellatospora in the phylogenetic trees. However, the average nucleotide indentity and DNA–DNA hybridization values between strain H14505T and closely related Catellatospora species showed that it belonged to a distinct species. Furthermore, the results of morphological, physiological and biochemical tests allowed further phenotypic differentiation of strain H14505T from its closest relatives. Thus, it is proposed that strain H14505T represents a novel species of the genus Catellatospora , for which the name Catellatospora sichuanensis sp. nov. is proposed. The type strain of Catellatospora sichuanensis is H14505T (=JCM 32394T=CICC 11042T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3944-3949 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Margo Cnockaert ◽  
Julie K. Ardley ◽  
Robert D. Trengove ◽  
Giovanni Garau ◽  
...  

Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937T belonged to the genus Burkholderia , with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia . The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076T (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937T to the genus Burkholderia . DNA–DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937T from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937T ( = LMG 27174T = HAMBI 3354T) as the type strain.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4068-4072 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Doo Nam Kim ◽  
Bo-Hye Nam ◽  
Sung-Min Won ◽  
...  

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1T, was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1T joins the cluster comprising the type strains of three species of the genus Amphritea , with which it exhibited 95.8–96.0 % sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3 %. Strain RA1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain RA1T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1T was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1T is separated from other species of the genus Amphritea . On the basis of the data presented, strain RA1T is considered to represent a novel species of the genus Amphritea , for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1T ( = KCTC 42154T = NBRC 110551T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1622-1627 ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Ying Liu ◽  
Ting-Ting Hou ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
...  

A Gram-staining-negative bacterium, strain TS-T86T, was isolated from Lake Tuosu, a saline lake (salinity 5.4 %, w/w) in Qaidam basin, China. Its taxonomic position was determined by using a polyphasic approach. Strain TS-T86T was strictly heterotrophic, aerobic and catalase- and oxidase-positive. Cells were non-spore-forming, non-motile rods, 0.4–0.6 µm wide and 1.2–2.3 µm long. Growth was observed in the presence of 0–9.0 % (w/v) NaCl (optimum, 2.0 %), at 4–35 °C (optimum, 25 °C) and at pH 7.0–10.5 (optimum, pH 8.5–9.0). Strain TS-T86T contained MK-7 as the predominant respiratory quinone. The major fatty acids (>10 %) were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 1ω9c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipids consisted of phosphatidylethanolamine, an unknown phospholipid, six unidentified aminolipids and two uncharacterized lipids. The DNA G+C content was 35 mol% (T m). Phylogenetic trees based on 16S rRNA gene sequences showed that strain TS-T86T was associated with the genus Belliella , and showed the highest sequence similarity to Belliella baltica BA134T (98.5 %) and then to Belliella kenyensis No.164T (95.7 %) and Belliella pelovolcani CC-SAL-25T (95.3 %). DNA–DNA relatedness of strain TS-T86T to Belliella baltica DSM 15883T was 32±3 %. It is concluded that strain TS-T86T represents a novel species of the genus Belliella , for which the name Belliella aquatica sp. nov. is proposed. The type strain is TS-T86T ( = CGMCC 1.12479T = JCM 19468T).


Sign in / Sign up

Export Citation Format

Share Document