Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis

2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 940-944 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Ali Makhdoumi-Kakhki ◽  
Maliheh Mehrshad ◽  
Seyed Abolhassan Shahzadeh Fazeli ◽  
Cathrin Spröer ◽  
...  

An extremely halophilic archaeon, strain D108T, was isolated from a brine sample of Aran-Bidgol salt lake in Iran. The novel strain was cream-pigmented, motile, pleomorphic rod-shaped and required at least 2.5 M NaCl but not MgCl2 for growth. Optimal growth was achieved with 4.3 M NaCl and 0.1 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, respectively, and the strain was able to grow over a pH range of 6.5 to 9.0, and a temperature range of 30 to 50 °C. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain D108T clustered with the type strain of the sole species of the genus Halorientalis , Halorientalis regularis TNN28T, with a sequence similarity of 98.8 %. The polar lipid pattern of strain D108T consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, one phosphoglycolipid and two glycolipids. The only quinone present was MK-8(II-H2). The DNA G+C content of strain D108T was 62.8 mol%. DNA–DNA hybridization studies (45 % with Halorientalis regularis IBRC-M 10760T), as well as biochemical and physiological characterization, allowed strain D108T to be differentiated from Halorientalis regularis . A novel species of the genus Halorientalis , Halorientalis persicus sp. nov., is therefore proposed to accommodate this strain. The type strain is D108T ( = IBRC-M 10043T = CECT 8375T). An emended description of the genus Halorientalis is also proposed.

2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3232-3236 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Ali Makhdoumi-Kakhki ◽  
Maliheh Mehrshad ◽  
Seyed Abolhassan Shahzadeh Fazeli ◽  
Antonio Ventosa

Strain CC65T, a novel extremely halophilic archaeon, was isolated from a brine sample of a salt lake in Iran. The novel strain was light yellow-pigmented, non-motile, pleomorphic and required at least 1.7 M NaCl and 0.02 M MgCl2 for growth. Optimal growth was achieved at 3.5 M NaCl and 0.4 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, respectively, while it was able to grow over a pH and a temperature range of pH 6.5–9.0 and 30–50 °C, respectively. Analysis of 16S rRNA gene sequence revealed that strain CC65T clustered with the sole member of the genus Halopenitus , Halopenitus persicus DC30T with a sequence similarity of 98.0 %. The polar lipid profile of strain CC65T consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. An unidentified glycolipid and two minor phospholipids were also observed. The only quinone present was MK-8(II-H2). The DNA G+C content of strain CC65T was 63.8 mol%. On the basis of the biochemical and physiological characteristics, as well as DNA–DNA hybridization (44 % with Halopenitus persicus IBRC 10041T), strain CC65T is classified as a novel species of the genus Halopenitus , for which the name Halopenitus malekzadehii sp. nov. is proposed. The type strain is CC65T ( = IBRC-M 10418T = KCTC 4045T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 65-70 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Ali Makhdoumi-Kakhki ◽  
Maliheh Mehrshad ◽  
Mehrnoosh Rasooli ◽  
Seyed Abolhassan Shahzadeh Fazeli ◽  
...  

An extremely halophilic archaeon, strain IC35T, was isolated from a mud sample of the Aran-Bidgol salt lake in Iran. The novel strain was cream, non-motile, rod-shaped and required at least 2.5 M NaCl, but not MgCl2, for growth. Optimal growth was achieved with 3.4 M NaCl and 0.1 M MgCl2. The optimum pH and temperature for growth were pH 7.0 (grew over a pH range of 6.5–9.0) and 40 °C (grew over a temperature range of 30–50 °C), respectively. Analysis of 16S rRNA gene sequences revealed that strain IC35T clustered with species of the genus Halovivax , with sequence similarities of 97.3 %, 96.6 % and 96.3 %, respectively, to Halovivax limisalsi IC38T, Halovivax asiaticus EJ-46T and Halovivax ruber XH-70T. The rpoB′ gene similarities between the novel strain and Halovivax limisalsi IBRC-M 10022T, Halovivax ruber JCM 13892T and Halovivax asiaticus JCM 14624T were 90.2 %, 90.2 % and 89.9 %, respectively. The polar lipid pattern of strain IC35T consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester; six unknown glycolipids and two minor phospholipids were also observed. The only quinone present was MK-8 (II-H2). The G+C content of the genomic DNA was 63.2 mol%. DNA–DNA hybridization studies (29 % hybridization with Halovivax limisalsi IBRC-M 10022T), as well as biochemical and physiological characterization, allowed strain IC35T to be differentiated from other species of the genus Halovivax . A novel species, Halovivax cerinus sp. nov., is therefore proposed to accommodate this strain. The type strain is IC35T ( = IBRC-M 10256T = KCTC 4050T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3563-3567 ◽  
Author(s):  
Wei-Yan Zhang ◽  
Yuan Meng ◽  
Xu-Fen Zhu ◽  
Min Wu

A novel extremely halophilic archaeon KCY07-B2T was isolated from a salt mine in Kuche county, Xinjiang province, China. Colonies were cream-pigmented and cells were pleomorphic rod-shaped. Strain KCY07-B2T was able to grow at 25–50 °C (optimum 37–45 °C) and pH 6.0–8.0 (optimum 7.0). The strain required at least 1.9 M NaCl for growth. MgCl2 was not required. Cells lysed in distilled water. Polar lipid analysis revealed the presence of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, derived from both C20C20 and C20C25 glycerol diethers, together with five glyolipids. The bis-sulfated glycolipid S2-DGD-1 was present. The DNA G+C content was 62.5 mol%. Analysis of the 16S rRNA gene sequence revealed that strain KCY07-B2T was closely related to Halopiger xanaduensis SH-6T and Halopiger aswanensis 56T (95.8 % and 95.5 % similarity, respectively). On the basis of its phenotypic, chemotaxonomic and genotypic characteristics, strain KCY07-B2T is considered to represent a novel species of the genus Halopiger , for which the name Halopiger salifodinae sp. nov. is proposed. The type strain is KCY07-B2T ( = JCM 18547T = CGMCC 1.12284T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1331-1336 ◽  
Author(s):  
A. Makhdoumi-Kakhki ◽  
M. A. Amoozegar ◽  
A. Ventosa

A novel red-pigmented halophilic archaeon, strain EB27T, was isolated from Aran-Bidgol salt lake, a hypersaline playa in Iran. Cells of strain EB27T were non-motile and pleomorphic (rods to triangular or disc-shaped). Strain EB27T required at least 2.5 M NaCl and 0.1 M MgCl2 for growth. Optimal growth was achieved at 4 M NaCl and 0.5 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C; it was able to grow at pH 6.0–8.0 and 25–50 °C. 16S rRNA gene sequence analysis showed that strain EB27T is a member of the family Halobacteriaceae ; however, levels of 16S rRNA gene sequence similarity were as low as 90.0, 89.3 and 89.1 % to the most closely related haloarchaeal taxa, namely Halalkalicoccus tibetensis DS12T, Halosimplex carlsbadense 2-9-1T and Halorhabdus utahensis AX-2T, respectively. The DNA G+C content of strain EB27T was 61 mol%. Strain EB27T contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, common phospholipids found in haloarchaea, together with two minor phospholipids. The only quinone present was MK-8(II-H2). Physiological, biochemical and phylogenetic differences between strain EB27T and recognized genera of extremely halophilic archaea suggest that this strain represents a novel species in a new genus within the family Halobacteriaceae , for which the name Halovenus aranensis gen. nov., sp. nov. is proposed. The type strain of Halovenus aranensis, the type species of the new genus, is strain EB27T ( = IBRC-M 10015T = CGMCC 1.11001T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 832-838 ◽  
Author(s):  
Matthew W. Maune ◽  
Ralph S. Tanner

A novel anaerobic, moderately thermophilic, NaCl-requiring fermentative bacterium, strain OS1T, was isolated from oil production water collected from Alaska, USA. Cells were Gram-negative, non-motile, non-spore-forming rods (1.7–2.7 × 0.4–0.5 µm). The G+C content of the genomic DNA of strain OS1T was 46.6 mol%. The optimum temperature, pH and NaCl concentration for growth of strain OS1T were 55 °C, pH 7 and 10 g l−1, respectively. The bacterium fermented d-fructose, d-glucose, maltose, d-mannose, α-ketoglutarate, l-glutamate, malonate, pyruvate, l-tartrate, l-asparagine, Casamino acids, l-cysteine, l-histidine, l-leucine, l-phenylalanine, l-serine, l-threonine, l-valine, inositol, inulin, tryptone and yeast extract. When grown on d-glucose, 3.86 mol hydrogen and 1.4 mol acetate were produced per mol substrate. Thiosulfate, sulfur and l-cystine were reduced to sulfide, and crotonate was reduced to butyrate with glucose as the electron donor. 16S rRNA gene sequence analysis indicated that strain OS1T was related to Anaerobaculum thermoterrenum (99.7 % similarity to the type strain), a member of the phylum Synergistetes . DNA–DNA hybridization between strain OS1T and A. thermoterrenum DSM 13490T yielded 68 % relatedness. Unlike A. thermoterrenum , strain OS1T fermented malonate, maltose, tryptone, l-leucine and l-phenylalanine, but not citrate, fumarate, lactate, l-malate, glycerol, pectin or starch. The major cellular fatty acid of strain OS1T was iso-C15 : 0 (91 % of the total). Strain OS1T also contained iso-C13 : 0 3-OH (3 %), which was absent from A. thermoterrenum , and iso-C13 : 0 (2 %), which was absent from Anaerobaculum mobile . On the basis of these results, strain OS1T represents a novel species of the genus Anaerobaculum , for which the name Anaerobaculum hydrogeniformans sp. nov. is proposed. The type strain is OS1T ( = DSM 22491T  = ATCC BAA-1850T). An emended description of the genus Anaerobaculum is also given.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2717-2723 ◽  
Author(s):  
Yuki Inahashi ◽  
Atsuko Matsumoto ◽  
Satoshi Ōmura ◽  
Yōko Takahashi

An actinomycete strain, designated K09-0627T, was isolated from the roots of an orchid collected in Okinawa Prefecture, Japan. Two actinomycete strains K11-0047T and K11-0057T were isolated from the roots of Rumex acetosa and Houttuynia cordata collected in Kanagawa Prefecture, Japan. 16S rRNA gene sequence analyses indicated that the isolates belonged to the genus Phytohabitans, and that they were closely related to each other and to Phytohabitans suffuscus K07-0523T. The DNA–DNA relatedness values between the three isolates and Phytohabitans suffuscus were below 70 %. On the basis of phylogenetic analysis, DNA–DNA relatedness values and phenotypic characteristics, the strains should be classified as novel species in the genus Phytohabitans , for which the names Phytohabitans flavus sp. nov. (type strain, K09-0627T = JCM 17387T = NBRC 107702T = DSM 45551T), Phytohabitans rumicis sp. nov. (type strain, K11-0047T = JCM 17829T = NBRC 108638T = BCC 48146T) and Phytohabitans houttuyneae sp. nov. (type strain, K11-0057T = JCM 17830T = NBRC 108639T = BCC 48147T) are proposed.


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1021-1026 ◽  
Author(s):  
A. Makhdoumi-Kakhki ◽  
M. A. Amoozegar ◽  
M. Bagheri ◽  
M. Ramezani ◽  
A. Ventosa

Strain EB21T was isolated from a brine sample from Aran-Bidgol salt lake, a saline playa in Iran. Strain EB21T was an orange–red-pigmented, motile rod and required at least 2 M NaCl but not MgCl2 for growth. Optimal growth was achieved at 3.5 M NaCl and 0.2 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, while it was able to grow at pH 6.0–8.0 and 25–55 °C. Analysis of the 16S rRNA gene sequence revealed that strain EB21T is a member of the family Halobacteriaceae , showing low levels of similarity to other members of the family. The highest sequence similarities, 91.8, 91.7 and 91.5 %, were obtained with the 16S rRNA gene sequences of the type strains of Halobiforma lacisalsi , Haloterrigena thermotolerans and Halalkalicoccus tibetensis , respectively. Polar lipid analyses revealed that strain EB21T contains phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Three unidentified glycolipids and one minor phospholipid were also observed. The only quinone present was MK-8(II-H2). The G+C content of its DNA was 67.7 mol%. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain EB21T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae , order Halobacteriales , for which the name Haloarchaeobius iranensis gen. nov., sp. nov. is proposed. The type strain of Haloarchaeobius iranensis is EB21T ( = IBRC-M 10013T  = KCTC 4048T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1825-1831 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
So-Jung Kang ◽  
Young-Baek Hur ◽  
...  

A Gram-negative, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated MA1-1T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain MA1-1T is phylogenetically closely related to Litoreibacter species and to Thalassobacter arenae . It exhibited 16S rRNA gene sequence similarities of 97.3, 97.1 and 97.3 % to the type strains of Litoreibacter albidus , Litoreibacter janthinus and T. arenae , respectively. Strain MA1-1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain MA1-1T was similar to those of the type strains of L. albidus and L. janthinus . T. arenae was found to be phylogenetically and chemotaxonomically more closely related to Litoreibacter species and strain MA1-1T than to Thalassobacter stenotrophicus , the type species of the genus Thalassobacter . The DNA G+C content of strain MA1-1T was 57.9 mol%, and DNA–DNA relatedness to the type strains of the two Litoreibacter species and T. arenae was 9–14 %. Differential phenotypic properties, together with the observed phylogenetic and genetic distinctiveness, distinguished strain MA1-1T from the two Litoreibacter species and T. arenae . On the basis of the data presented, strain MA1-1T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter meonggei sp. nov. is proposed. The type strain is MA1-1T ( = KCTC 23699T  = CCUG 61486T). In this study, it is also proposed that Thalassobacter arenae is reclassified as a member of the genus Litoreibacter , Litoreibacter arenae comb. nov. (type strain GA2-M15T  = DSM 19593T  = KACC 12675T). An emended description of the genus Litoreibacter is also presented.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3526-3531 ◽  
Author(s):  
Fabien Aujoulat ◽  
Philippe Bouvet ◽  
Estelle Jumas-Bilak ◽  
Hélène Jean-Pierre ◽  
Hélène Marchandin

Ten isolates of unknown, Gram-stain-negative, anaerobic cocci were recovered from human clinical samples, mainly from semen. On the basis of their phenotypic features, including morphology, main metabolic end products, gas production, nitrate reduction and decarboxylation of succinate, the strains were identified as members of the genus Veillonella. Multi-locus sequence analysis and corresponding phylogenies were based on 16S rRNA, dnaK and rpoB genes, and on the newly proposed gltA gene. The strains shared high levels of genetic sequence similarity and were related most closely to Veillonella ratti . The strains could not be differentiated from V. ratti on the basis of 16S rRNA gene sequence analysis while gltA, rpoB and dnaK gene sequences showed 85.1, 93.5 and 90.2 % similarity with those of the type strain of V. ratti , respectively. Phylogenetic analyses revealed that the isolates formed a robust clade in the V. ratti – Veillonella criceti – Veillonella magna subgroup of the genus Veillonella . As observed for V. criceti , the isolates were able to ferment fructose. In contrast to other members of the genus Veillonella , the 10 strains were not able to metabolize lactate. Cellular fatty acid composition was consistent with that of other species of the genus Veillonella . From these data, the 10 isolates are considered to belong to a novel species in the genus Veillonella , for which the name Veillonella seminalis sp. nov. is proposed. The type strain is ADV 4313.2T ( = CIP 107810T = LMG 28162T). Veillonella strain ACS-216-V-Col6b subjected to whole genome sequencing as part as the Human Microbiome Project is another representative of V. seminalis sp. nov. An emended description of the genus Veillonella is also proposed.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3585-3590 ◽  
Author(s):  
Xin Zhang ◽  
Wei-Yan Zhang ◽  
Ai-Hua Shen ◽  
Ying-Yi Huo ◽  
Xu-Fen Zhu ◽  
...  

A thermotolerant, extremely halophilic archaeon, BC12-B1T, was isolated from a salt mine in Baicheng county, Xinjiang province, China. Colonies were off-white–grey. The cells stained Gram-negative, were motile and irregularly long-rod-shaped (variation in both width and length) with abundant gas vesicles. The strain was able to grow at 20–55 °C (optimum, 48 °C), at pH 6.0–8.0 (optimum, 7.0–7.3), with 1.8–6.0 M NaCl (optimum, 3.0–3.5 M) and with 0.02–2.2 M Mg2+ (optimum, 0.1–0.2 M). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain BC12-B1T was most closely related to Halopelagius inordinatus RO5-2T (98.5 %) with less than 95 % sequence similarity to other described species. The genomic DNA G+C content of strain BC12-B1T was 64.0 mol%. The DNA–DNA hybridization value between strain BC12-B1T and Hpl. inordinatus RO5-2T was 43.6 %. The major polar lipids of strain BC12-B1T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, four glycolipids and an unknown lipid. Based on phenotypic, chemotaxonomic and genotypic characteristics, strain BC12-B1T represents a novel species of the genus Halopelagius , for which the name Halopelagius longus sp. nov. is proposed. The type strain is BC12-B1T ( = CGMCC 1.12397T = JCM 18758T). An emended description of the genus Halopelagius is also provided.


Sign in / Sign up

Export Citation Format

Share Document