scholarly journals Phytohabitans flavus sp. nov., Phytohabitans rumicis sp. nov. and Phytohabitans houttuyneae sp. nov., isolated from plant roots, and emended description of the genus Phytohabitans

2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2717-2723 ◽  
Author(s):  
Yuki Inahashi ◽  
Atsuko Matsumoto ◽  
Satoshi Ōmura ◽  
Yōko Takahashi

An actinomycete strain, designated K09-0627T, was isolated from the roots of an orchid collected in Okinawa Prefecture, Japan. Two actinomycete strains K11-0047T and K11-0057T were isolated from the roots of Rumex acetosa and Houttuynia cordata collected in Kanagawa Prefecture, Japan. 16S rRNA gene sequence analyses indicated that the isolates belonged to the genus Phytohabitans, and that they were closely related to each other and to Phytohabitans suffuscus K07-0523T. The DNA–DNA relatedness values between the three isolates and Phytohabitans suffuscus were below 70 %. On the basis of phylogenetic analysis, DNA–DNA relatedness values and phenotypic characteristics, the strains should be classified as novel species in the genus Phytohabitans , for which the names Phytohabitans flavus sp. nov. (type strain, K09-0627T = JCM 17387T = NBRC 107702T = DSM 45551T), Phytohabitans rumicis sp. nov. (type strain, K11-0047T = JCM 17829T = NBRC 108638T = BCC 48146T) and Phytohabitans houttuyneae sp. nov. (type strain, K11-0057T = JCM 17830T = NBRC 108639T = BCC 48147T) are proposed.

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1290-1295 ◽  
Author(s):  
Riitta Rahkila ◽  
Katrien De Bruyne ◽  
Per Johansson ◽  
Peter Vandamme ◽  
Johanna Björkroth

In the present study we investigated the taxonomic status of 20 lactic acid bacteria (LAB) originating from packaged meat. On the basis of 16S rRNA gene sequence similarity, these strains were shown to belong to the genus Leuconostoc with Leuconostoc gelidum , Leuconostoc inhae and Leuconostoc gasicomitatum as the closest phylogenetic relatives. The novel strains shared more than 70 % DNA–DNA relatedness with type and reference strains of both L. gelidum and L. gasicomitatum . The DNA–DNA relatedness values between L. gelidum type and reference strains and L. gasicomitatum type and reference strains were also above 70 %, showing that all these strains belonged to the same species. Sequence analyses of concatenated atpA, pheS, and rpoA genes demonstrated that the novel strains as well as type and reference strains of L. gelidum and L. gasicomitatum are phylogenetically closely related, but form three clearly separated subgroups. Numerical analysis of HindIII ribopatterns and phenotypic tests supported this subdivision. Based on the data presented in this study, we propose to reclassify Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov. (type strain, LMG 18811T = DSM 15947T). The novel strains isolated in the present study represent a novel subspecies, for which the name Leuconostoc gelidum subsp. aenigmaticum subsp. nov. is proposed, with POUF4dT ( = LMG 27840T = DSM 19375T) as the type strain. The proposal of these two novel subspecies automatically creates the subspecies Leuconostoc gelidum subsp. gelidum subsp. nov. (type strain, NCFB 2775T = DSM 5578T). An emended description of Leuconostoc gelidum is also provided.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 599-606 ◽  
Author(s):  
Joachim Wink ◽  
Peter Schumann ◽  
Cathrin Spöer ◽  
Kerstin Eisenbarth ◽  
Stefanie P. Glaeser ◽  
...  

In 2000, an actinomycete strain that showed strong antibacterial activity in culture extracts was isolated from a soil sample. The antibiotic activity corresponds to a lipopeptide complex that was named friulimycin, as the producing micro-organism was isolated from a soil sample from the region of Friaul in Italy. Taxonomic investigations showed that the producer strain belonged to a novel species of the genus Actinoplanes , for which the name Actinoplanes friuliensis was proposed. During further taxonomic studies, another antibiotic-producing isolate belonging to the genus Actinoplanes , FH 2241T, was characterized; in a patent, the name ‘Actinoplanes nipponensis’ was proposed for this strain. This organism was shown to be related to A. friuliensis . ‘A. nipponensis’ was never described in detail and the name was never validly published. Here we present a complete description of Actinoplanes nipponensis sp. Nov. (type strain FH 2241T = ATCC 31145T = DSM 43867T) and an emended description of Actinoplanes friuliensis (type strain HAG 010964T = DSM 45797T = CCUG 63250T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2724-2730 ◽  
Author(s):  
Peter Schumann ◽  
De-Chao Zhang ◽  
Mersiha Redzic ◽  
Rosa Margesin

A Gram-type positive, Gram-reaction variable, non-motile, psychrophilic actinobacterium, designated Cr8-25T, was isolated from alpine glacier cryoconite and was able to grow well over a temperature range of 1–15 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Cr8-25T belonged to the family Microbacteriaceae and showed highest 16S rRNA gene sequence similarity with Klugiella xanthotipulae 44C3T (97.0 %). However, strain Cr8-25T could be differentiated from the type strain of K. xanthotipulae on the level of genomospecies by a DNA–DNA relatedness value of only 37.2 %. Strain Cr8-25T contained a cell-wall peptidoglycan that was cross-linked according to the B-type, which is based on 2,4-diaminobutyric acid. The cell wall contained the sugars galactose, fucose and rhamnose. The predominant cellular fatty acids of strain Cr8-25T were C15 : 0 anteiso (64.6 %) and iso-C16 : 0 (22.5 %) and the major menaquinones were MK-11 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and unknown glycolipids. The G+C content of the genomic DNA was 58.8 mol%. On the basis of the phenotypic characteristics, phylogenetic and chemotaxonomic analyses and DNA–DNA relatedness data, strain Cr8-25T represents a novel species of a new genus in the family Microbacteriaceae , for which the name Alpinimonas psychrophila gen. nov., sp. nov. is proposed. The type strain is Cr8-25T ( = DSM 23737T = LMG 26215T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 832-838 ◽  
Author(s):  
Matthew W. Maune ◽  
Ralph S. Tanner

A novel anaerobic, moderately thermophilic, NaCl-requiring fermentative bacterium, strain OS1T, was isolated from oil production water collected from Alaska, USA. Cells were Gram-negative, non-motile, non-spore-forming rods (1.7–2.7 × 0.4–0.5 µm). The G+C content of the genomic DNA of strain OS1T was 46.6 mol%. The optimum temperature, pH and NaCl concentration for growth of strain OS1T were 55 °C, pH 7 and 10 g l−1, respectively. The bacterium fermented d-fructose, d-glucose, maltose, d-mannose, α-ketoglutarate, l-glutamate, malonate, pyruvate, l-tartrate, l-asparagine, Casamino acids, l-cysteine, l-histidine, l-leucine, l-phenylalanine, l-serine, l-threonine, l-valine, inositol, inulin, tryptone and yeast extract. When grown on d-glucose, 3.86 mol hydrogen and 1.4 mol acetate were produced per mol substrate. Thiosulfate, sulfur and l-cystine were reduced to sulfide, and crotonate was reduced to butyrate with glucose as the electron donor. 16S rRNA gene sequence analysis indicated that strain OS1T was related to Anaerobaculum thermoterrenum (99.7 % similarity to the type strain), a member of the phylum Synergistetes . DNA–DNA hybridization between strain OS1T and A. thermoterrenum DSM 13490T yielded 68 % relatedness. Unlike A. thermoterrenum , strain OS1T fermented malonate, maltose, tryptone, l-leucine and l-phenylalanine, but not citrate, fumarate, lactate, l-malate, glycerol, pectin or starch. The major cellular fatty acid of strain OS1T was iso-C15 : 0 (91 % of the total). Strain OS1T also contained iso-C13 : 0 3-OH (3 %), which was absent from A. thermoterrenum , and iso-C13 : 0 (2 %), which was absent from Anaerobaculum mobile . On the basis of these results, strain OS1T represents a novel species of the genus Anaerobaculum , for which the name Anaerobaculum hydrogeniformans sp. nov. is proposed. The type strain is OS1T ( = DSM 22491T  = ATCC BAA-1850T). An emended description of the genus Anaerobaculum is also given.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2234-2238 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826T and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9 % 16S rRNA gene sequence similarity and showed 92 % DNA–DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of Thalassolituus oleivorans with a sequence similarity of 96.4 % and formed a robust phyletic lineage with T. oleivorans . DNA–DNA relatedness between the two strains and T. oleivorans DSM 14913T was 8.7–11.6 %. A putative alkane hydroxylase (alkB) gene was detected in strain IMCC1826T by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of T. oleivorans DSM 14913T. As expected from the presence of the alkB gene, the new strains utilized n-tetradecane and n-hexadecane as a carbon source. The DNA G+C content was 54.6–56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826T and IMCC1883 represent a novel species of the genus Thalassolituus , for which the name Thalassolituus marinus sp. nov. is proposed, with IMCC1826T ( = KCTC 23084T = NBRC 107590T) as the type strain.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1825-1831 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
So-Jung Kang ◽  
Young-Baek Hur ◽  
...  

A Gram-negative, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated MA1-1T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain MA1-1T is phylogenetically closely related to Litoreibacter species and to Thalassobacter arenae . It exhibited 16S rRNA gene sequence similarities of 97.3, 97.1 and 97.3 % to the type strains of Litoreibacter albidus , Litoreibacter janthinus and T. arenae , respectively. Strain MA1-1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain MA1-1T was similar to those of the type strains of L. albidus and L. janthinus . T. arenae was found to be phylogenetically and chemotaxonomically more closely related to Litoreibacter species and strain MA1-1T than to Thalassobacter stenotrophicus , the type species of the genus Thalassobacter . The DNA G+C content of strain MA1-1T was 57.9 mol%, and DNA–DNA relatedness to the type strains of the two Litoreibacter species and T. arenae was 9–14 %. Differential phenotypic properties, together with the observed phylogenetic and genetic distinctiveness, distinguished strain MA1-1T from the two Litoreibacter species and T. arenae . On the basis of the data presented, strain MA1-1T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter meonggei sp. nov. is proposed. The type strain is MA1-1T ( = KCTC 23699T  = CCUG 61486T). In this study, it is also proposed that Thalassobacter arenae is reclassified as a member of the genus Litoreibacter , Litoreibacter arenae comb. nov. (type strain GA2-M15T  = DSM 19593T  = KACC 12675T). An emended description of the genus Litoreibacter is also presented.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1307-1313 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
Pei-Jin Zhou ◽  
...  

Two halophilic archaea, strains TBN53T and CSW2.24.4T, were characterized to elucidate their taxonomic status. Strain TBN53T was isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China, whereas strain CSW2.24.4T was isolated from a saltern crystallizer in Victoria, Australia. Cells of the two strains were pleomorphic, stained Gram-negative and produced red-pigmented colonies. Strain TBN53T was able to grow at 25–55 °C (optimum 45 °C), with 1.4–5.1 M NaCl (optimum 2.6–3.9 M NaCl), with 0–1.0 M MgCl2 (optimum 0–0.1 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0), whereas strain CSW2.24.4T was able to grow at 25–45 °C (optimum 37 °C), with 2.6–5.1 M NaCl (optimum 3.4 M NaCl), with 0.01–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells of the two isolates lysed in distilled water. The minimum NaCl concentrations that prevented cell lysis were 8 % (w/v) for strain TBN53T and 12 % (w/v) for strain CSW2.24.4T. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate, with two glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. Trace amounts of other unidentified lipids were also detected. On the basis of 16S rRNA gene sequence analysis, strains TBN53T and CSW2.24.4T showed 94.1 % similarity to each other and were closely related to Halobellus clavatus TNN18T (95.0 and 94.7 % similarity, respectively). Levels of rpoB′ gene sequence similarity between strains TBN53T and CSW2.24.4T, and between these strains and Halobellus clavatus TNN18T were 88.5, 88.5 and 88.1 %, respectively. The DNA G+C contents of strains TBN53T and CSW2.24.4T were 69.2 and 67.0 mol%, respectively. The level of DNA–DNA relatedness between strain TBN53T and strain CSW2.24.4T was 25 %, and these two strains showed low levels of DNA–DNA relatedness with Halobellus clavatus TNN18T (30 and 29 % relatedness, respectively). Based on these phenotypic, chemotaxonomic and phylogenetic properties, two novel species of the genus Halobellus are proposed to accommodate these two strains, Halobellus limi sp. nov. (type strain TBN53T = CGMCC 1.10331T = JCM 16811T) and Halobellus salinus sp. nov. (type strain CSW2.24.4T = DSM 18730T = CGMCC 1.10710T = JCM 14359T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3526-3531 ◽  
Author(s):  
Fabien Aujoulat ◽  
Philippe Bouvet ◽  
Estelle Jumas-Bilak ◽  
Hélène Jean-Pierre ◽  
Hélène Marchandin

Ten isolates of unknown, Gram-stain-negative, anaerobic cocci were recovered from human clinical samples, mainly from semen. On the basis of their phenotypic features, including morphology, main metabolic end products, gas production, nitrate reduction and decarboxylation of succinate, the strains were identified as members of the genus Veillonella. Multi-locus sequence analysis and corresponding phylogenies were based on 16S rRNA, dnaK and rpoB genes, and on the newly proposed gltA gene. The strains shared high levels of genetic sequence similarity and were related most closely to Veillonella ratti . The strains could not be differentiated from V. ratti on the basis of 16S rRNA gene sequence analysis while gltA, rpoB and dnaK gene sequences showed 85.1, 93.5 and 90.2 % similarity with those of the type strain of V. ratti , respectively. Phylogenetic analyses revealed that the isolates formed a robust clade in the V. ratti – Veillonella criceti – Veillonella magna subgroup of the genus Veillonella . As observed for V. criceti , the isolates were able to ferment fructose. In contrast to other members of the genus Veillonella , the 10 strains were not able to metabolize lactate. Cellular fatty acid composition was consistent with that of other species of the genus Veillonella . From these data, the 10 isolates are considered to belong to a novel species in the genus Veillonella , for which the name Veillonella seminalis sp. nov. is proposed. The type strain is ADV 4313.2T ( = CIP 107810T = LMG 28162T). Veillonella strain ACS-216-V-Col6b subjected to whole genome sequencing as part as the Human Microbiome Project is another representative of V. seminalis sp. nov. An emended description of the genus Veillonella is also proposed.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 839-843 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming, aerobic, rod-shaped bacterial strain, designated DPG-28T, was isolated from seawater on the southern coast of Korea. Strain DPG-28T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DPG-28T formed a coherent cluster with members of the genera Marivita and Gaetbulicola , with which it exhibited sequence similarity values of 97.8–98.5 %. The DNA G+C content of strain DPG-28T was 65.1 mol%. The predominant ubiquinone of strain DPG-28T was ubiquinone-10 (Q-10), consistent with data for the genera Marivita and Gaetbulicola . The cellular fatty acid profiles of strain DPG-28T and the type strains of Marivita cryptomonadis , Marivita litorea and Gaetbulicola byunsanensis were essentially similar in that the common predominant fatty acid was C18 : 1ω7c. Major polar lipids found in strain DPG-28T and the type strains of M. cryptomonadis , M. litorea and G. byunsanensis were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. From these data, it is proposed that Gaetbulicola byunsanensis be reclassified as a member of the genus Marivita , for which the name Marivita byunsanensis comb. nov. is proposed, with the type strain SMK-114T ( = CCUG 57612T  = KCTC 22632T), and that strain DPG-28T be classified in the genus Marivita . Differential phenotypic properties and genetic distinctiveness of strain DPG-28T demonstrated that this strain is distinguishable from M. cryptomonadis , M. litorea and G. byunsanensis . On the basis of the data presented, strain DPG-28T is considered to represent a novel species of the genus Marivita , for which the name Marivita hallyeonensis sp. nov. is proposed. The type strain is DPG-28T ( = KCTC 23421T  = CCUG 60522T). An emended description of the genus Marivita is also provided.


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1437-1443 ◽  
Author(s):  
Shi Peng ◽  
Liu Dongying ◽  
Yang Bingxin ◽  
Li Mingjun ◽  
Wei Gehong

A Gram-stain-positive, non-motile, catalase- and oxidase-positive rod, designated CCNWSP60T, was isolated from the nodule surface of soybean [Glycine max (L.) Merrill] cultivar Zhonghuang 13. 16S rRNA gene sequence analysis clearly showed that the isolate belonged to the genus Microbacterium . On the basis of pairwise comparisons of 16S rRNA gene sequences, strain CCNWSP60T was most closely related to Microbacterium murale DSM 22178T (98.8 % similarity), Microbacterium aerolatum DSM 14217T (98.3 %), Microbacterium ginsengiterrae DSM 24823T (98.0 %) and Microbacterium profundi DSM 22239T (97.8 %). However, the DNA–DNA relatedness values of strain CCNWSP60T to M. murale DSM 22178T, M. aerolatum DSM 14217T, M. ginsengiterrae DSM 24823T and M. profundi DSM 22239T were 48 %, 43 %, 28 % and 41 %, respectively. Growth of strain CCNWSP60T occurred at 4–40 °C and at pH 5.0–9.0. The NaCl range for growth was 0–4 % (w/v). The predominant menaquinone of strain CCNWSP60T was MK-13; MK-12 was also detected. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid and one unidentified phospholipid. The diagnostic diamino acid of the peptidoglycan was ornithine. The acyl type of the peptidoglycan was glycolyl. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and C16 : 0. The DNA G+C content of the type strain was 67.4 mol%. As the physiological and biochemical characteristics as well as the DNA–DNA relatedness between strain CCNWSP60T and the type strains of its closest phylogenetic neighbours showed clear differences, a novel species Microbacterium shaanxiense is proposed to accommodate it. The type strain is CCNWSP60T ( = DSM 28301T = ACCC 19329T = JCM 30164T).


Sign in / Sign up

Export Citation Format

Share Document