scholarly journals Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2986-2991 ◽  
Author(s):  
Xiao-Li Su ◽  
Qi Tian ◽  
Jie Zhang ◽  
Xian-Zheng Yuan ◽  
Xiao-Shuang Shi ◽  
...  

A strictly anaerobic, mesophilic, carbohydrate-fermenting, hydrogen-producing bacterium, designated strain RL-CT, was isolated from a reed swamp in China. Cells were Gram-stain-negative, catalase-negative, non-spore-forming, non-motile rods measuring 0.7–1.0 µm in width and 3.0–8.0 µm in length. The optimum temperature for growth of strain RL-CT was 37 °C (range 25–40 °C) and pH 7.0–7.5 (range pH 5.7–8.0). The strain could grow fermentatively on yeast extract, tryptone, arabinose, glucose, galactose, mannose, maltose, lactose, glycogen, pectin and starch. The main end products of glucose fermentation were acetate, H2 and CO2. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required for growth; however, it stimulated growth slightly. Nitrate, sulfate, sulfite, thiosulfate, elemental sulfur and Fe(III) nitrilotriacetate were not reduced as terminal electron acceptors. Aesculin was hydrolysed but not gelatin. Indole and H2S were produced from yeast extract. The G+C content of the genomic DNA was 51.2 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The most abundant polar lipid of strain RL-CT was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured Blvii28 wastewater-sludge group (http://www.arb-silva.de/) in the family Rikenellaceae of the phylum Bacteroidetes, and shared low sequence similarities with the related species Alistipes shahii WAL 8301T (81.8 %), Rikenella microfusus ATCC 29728T (81.7 %) and Anaerocella delicata WN081T (80.9 %). On the basis of these data, a novel species in a new genus of the family Rikenellaceae is proposed, Acetobacteroides hydrogenigenes gen. nov., sp. nov. The type strain of the type species is RL-CT ( = JCM 17603T = DSM 24657T = CGMCC 1.5173T).

Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2020 ◽  
Vol 70 (9) ◽  
pp. 5032-5039 ◽  
Author(s):  
Jae-Chan Lee ◽  
Kyung-Sook Whang

A Gram-stain-positive actinobacterial strain, designated ANK073T, was isolated from rhizosphere soil sampled at a spinach farming field in Shinan, Republic of Korea. Cells of strain ANK073T were found to be aerobic, non-motile, non-spore-forming rods which could grow at 20–40 °C (optimum, 30 °C), at pH 6.0–10.0 (optimum, pH 6.5–7.5) and at salinities of 0–4 % (w/v) NaCl (optimum, 0 % NaCl). The 16S rRNA gene sequence analysis showed that strain ANK073T belongs to the genus Agromyces with high sequence similarities to Agromyces humatus CD5T (98.8 %), Agromyces tardus SJ-23T (98.5 %) and Agromyces iriomotensis IY07-20T (98.4 %). The phylogenetic analysis indicated that strain ANK073T formed a distinct phyletic line in the genus Agromyces and the results of DNA–DNA relatedness and phylogenomic analysis based on whole genome sequences demonstrated that strain ANK073T could be separated from its closest relatives in the genus Agromyces . The strain contained 2,4-diaminobutylic acid, glycine, d-glutamic acid and d-alanine in the peptidoglycan. The predominant menaquinones were identified as MK-12 and MK-11, and the major fatty acids were anteiso-C17 : 0, anteiso-C15 :  0 and iso-C15:0. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genome was determined to be 70.2 mol%. On the basis of its phenotypic and chemotaxonomic properties and the results of phylogenetic and phylogenomic analyses, strain ANK073T is considered to represent a novel species in the genus Agromyces , for which the name Agromyces humi sp. nov. is proposed. The type strain is ANK073T (=KACC 18683T=NBRC 111825T).


Author(s):  
Xiaoya Peng ◽  
Yumin Zhang ◽  
Yijing Lu ◽  
Xueyin Zhou ◽  
Zhourui Wei ◽  
...  

A rod-shaped, yellow-pigmented, Gram-stain-negative, non-motile and aerobic bacterium, designated 7-3AT, was isolated from soil from King George Island, maritime Antarctica, and subjected to a polyphasic taxonomic study. Growth occurred at 4–37 °C (optimum, 20°C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Tolerance to NaCl was up to 4 % (w/v) with optimum growth in the absence of NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 7-3AT represented a member of the family Flavobacteriaceae . Strain 7-3AT showed the highest sequence similarities with Kaistella yonginensis HMD 1043T (96.65 %), Kaistella carnis NCTC 13525T (96.53 %), Kaistella chaponensis DSM 23145T (96.27 %), Kaistella antarctica LMG 24720T (96.13 %) and Kaistella jeonii DSM 17048T (96.06 %). A whole genome-level comparison of 7-3AT with K. jeonii DSM 17048T, K. antarctica LMG 24720T, K. chaponensis DSM 23145T, and Kaistella palustris DSM 21579T revealed average nucleotide identity (ANI) values of 79.03, 82.25, 78.12, and 74.42 %, respectively. The major respiratory isoprenoid quinone was identified as MK-6 and a few ubiquinones Q-10 were identified. In addition, flexirubin-type pigments were absent. The polar lipid profile of 7-3AT was found to contain one phosphatidylethanolamine, six unidentified aminolipids (AL) and two unidentified lipids (L). The G+C content of the genomic DNA was determined to be 34.54 mol%. The main fatty acids were iso-C15 : 0, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl), anteiso-C15 : 0, iso-C13 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). On the basis of the evidence presented in this study, a novel species of the genus Kaistella , Kaistella flava sp. nov., is proposed, with the type strain 7-3AT (=CCTCC AB 2016141T= KCTC 52492T). Emended descriptions of Kaistella yonginensis , Kaistella jeonii , Kaistella antarctica and Kaistella chaponensis are also given.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2624-2630 ◽  
Author(s):  
Vikram Surendra ◽  
Pant Bhawana ◽  
Korpole Suresh ◽  
T. N. R. Srinivas ◽  
Pinnaka Anil Kumar

A novel Gram-negative, rod-shaped, non-motile, non-sporulating bacterium, designated strain K1T, was isolated from an estuarine water sample collected from Kochi, Kerala, India. Colonies on marine agar were circular, 2.0–2.5 mm in diameter, shiny, yellow, translucent and convex with entire margins. Strain K1T was negative for ornithine decarboxylase, lysine decarboxylase, nitrate reduction and H2S production. The fatty acids were dominated by iso-branched components with a high abundance of iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH; MK-6 (64 %) and MK-7 (34 %) were found as major respiratory quinones; and phosphatidylethanolamine, two unidentified aminolipids, four unidentified phospholipids and two unidentified lipids were major polar lipids. The DNA G+C content of strain K1T was 46.1 mol%. 16S rRNA gene sequence analysis indicated that strain K1T was related most closely to the type strain of Zhouia amylolytica (pairwise sequence similarity of 93.0 %). Phylogenetic analysis showed that strain K1T formed a distinct branch within the family Flavobacteriaceae and clustered with the clade comprising species of the genera Zhouia , Coenonia and Capnocytophaga , being phylogenetically most closely related to the type strain of Zhouia amylolytica at a distance of 9.2 % (90.8 % similarity). Other species of the genera within the same clade were related to strain K1T at distances of 15.0–23.1 %. Based on phenotypic and chemotaxonomic characteristics and on phylogenetic inference, strain K1T is considered to represent a novel species of a new genus in the family Flavobacteriaceae , for which the name Imtechella halotolerans gen. nov., sp. nov. is proposed. The type strain of Imtechella halotolerans is K1T ( = MTCC 11055T = JCM 17677T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 789-793 ◽  
Author(s):  
Paul A. Lawson ◽  
Sydney M. Finegold

During our previous studies we reclassified Clostridium coccoides and a number of misclassified ruminococci into a novel genus Blautia within the family Lachnospiraceae . However, the Rules of the Bacteriological Code currently require that the types of all species and subspecies with new names (including new combinations) be deposited in two different collections in two different countries. The type strain of Ruminococcus obeum was, at that period in time, only deposited in the American Type Culture Collection (ATCC) and a second independent deposit, as required by the Code, was not available. Consequently, the transfer of this species to the genus Blautia could not be made, because the resulting species name would not conform to the Rules governing the valid publication of species names and deposit of type material (Rules 27 and 30) and consequently would not be considered to be validly published. This resulted in a nomenclatural and taxonomic anomaly with R. obeum being phylogenetically placed among members of the genus Blautia with 16S rRNA gene sequence similarities of between 91.8 and 96.6 %. In order to rectify this unsatisfactory situation, through our discussions with the ATCC, the deposit of strain R. obeum ATCC 29174T to the DSMZ as strain number DSM 25238T was completed. Hence, the transfer of R. obeum to the genus Blautia as Blautia obeum comb. nov. is now proposed. The type strain is ATCC 29174T ( = DSM 25238T = KCTC 15206T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 109-113 ◽  
Author(s):  
Zhao-Ming Gao ◽  
Xin Liu ◽  
Xi-Ying Zhang ◽  
Ling-Wei Ruan

A moderately thermophilic and strictly anaerobic bacterium, designated HS1T, was isolated from offshore hot spring sediment in Xiamen, China. Cells were Gram-negative, catalase-positive, oxidase-negative, slender and flexible rods without flagella. The strain could grow at 35–55 °C (optimum at 50 °C) and in 1–8 % NaCl (w/v; optimum 2–4 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HS1T was affiliated with the family Marinilabiliaceae and shared a distant relationship with the previously described genera. The isolate was most closely related to Anaerophaga thermohalophila Fru22T with 16S rRNA gene sequence similarity of 92.4 %, followed by the other members of the family Marinilabiliaceae with 88.7–91.1 % similarity. The dominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant quinone was MK-7. The major polar lipids were phosphatidylethanolamine (PE) and an unknown polar lipid. The genomic DNA G+C content was 38.7 mol%. Besides the phylogenetically distant relationship, strain HS1T was obviously distinguished from the most closely related genera in several phenotypic properties including colony colour and pigment production, optimal temperature, optimal NaCl, relation to O2, bicarbonate/carbonate requirement, catalase activity, nitrate reduction, fermentation products and cellular fatty acid profile. Based on the phenotypic and phylogenetic data, strain HS1T represents a novel species of a new genus, for which the name Thermophagus xiamenensis gen. nov., sp. nov. is proposed. The type strain of the type species is HS1T ( = DSM 19012T = CGMCCC 1.5071T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1491-1498 ◽  
Author(s):  
Ammara Nariman Addou ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
Hocine Hacene ◽  
Jean-Luc Cayol ◽  
...  

A novel filamentous bacterium, designated NariEXT, was isolated from soil collected from Chott Melghir salt lake, which is located in the south-east of Algeria. The strain was an aerobic, halotolerant, thermotolerant, Gram-positive bacterium that was able to grow in NaCl concentrations up to 21 % (w/v), at 37–60 °C and at pH 5.0–9.5. The major fatty acids were iso- and anteiso-C15 : 0. The DNA G+C content was 47.3 mol%. The major menaquinone was MK-7, but MK-6 and MK-8 were also present. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine (methyl-PE). Results of molecular and phenotypic analysis led to the description of the strain as a new member of the family Thermoactinomycetaceae . The isolate was distinct from members of recognized genera of this family by morphological, biochemical and chemotaxonomic characteristics. Strain NariEXT showed 16S rRNA gene sequence similarities of 95.38 and 94.28 % with the type strains of Desmospora activa and Kroppenstedtia eburnea , respectively, but differed from both type strains in its sugars, polar lipids and in the presence of methyl-PE. On the basis of physiological and phylogenetic data, strain NariEXT represents a novel species of a new genus of the family Thermoactinomycetaceae for which the name Melghirimyces algeriensis gen. nov., sp. nov. is proposed. The type strain of Melghirimyces algeriensis, the type species of the genus, is NariEXT ( = DSM 45474T = CCUG 59620T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1799-1804 ◽  
Author(s):  
He Xing ◽  
Chongxi Liu ◽  
Yuejing Zhang ◽  
Junwei Zhao ◽  
Chuang Li ◽  
...  

A novel actinomycete, designated strain NEAU-FHS4T, was isolated from the root of black false hellebore (Veratrum nigrum L.). Strain NEAU-FHS4T formed single spores with smooth surfaces on substrate mycelium. The novel strain contained meso-diaminopimelic as amino acid of the peptidoglycan and xylose and glucose as whole-cell sugars. The predominant menaquinones were MK-10(H6) and MK-10(H8). Mycolic acids were not detected. The diagnostic phospholipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. The predominant cellular fatty acids were iso-C16 : 0, C16 : 0, C18 : 0 and anteiso-C17 : 0. Phenotypic and chemotaxonomic analysis showed that the novel isolate had characteristics typical of members of the genus Plantactinospora . 16S rRNA gene sequence analysis also indicated that strain NEAU-FHS4T belonged to the genus Plantactinospora , with highest sequence similarities to Plantactinospora mayteni YIM 61359T (98.88 %) and Plantactinospora endophytica YIM 68255T (98.85 %). The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the novel strain from the most closely related strains. Based on morphological, chemotaxonomic and phylogenetic data, strain NEAU-FHS4T is considered to represent a novel species of the genus Plantactinospora , for which the name Plantactinospora veratri sp. nov. is proposed. The type strain is NEAU-FHS4T ( = CGMCC 4.7143T = DSM 46718T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2878-2882 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Hyung-Gwan Lee ◽  
Chi-Yong Ahn ◽  
Hee-Mock Oh

A Gram-stain-negative, aerobic, non-motile, rod- and coccus-shaped bacterium, designated strain B6-12T, was isolated from sediment collected from the River Geumho in South Korea. In comparative 16S rRNA gene sequence analysis, the novel strain appeared to be affiliated with the class Alphaproteobacteria and to be most closely related to Kaistia adipata KCTC 12095T, Kaistia dalseonensis DSM 18800T, Kaistia geumhonensis DSM 18799T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T, with sequence similarities of 96.2–99.1 %. The predominant ubiquinone in the isolate was Q-10, major fatty acids were C18 : 0, C18 : 1ω7c and C19 : 0ω8c cyclo, and genomic DNA G+C content was 63.0 mol%. Based on the phylogenetic and chemotaxonomic evidence and the results of DNA–DNA hybridizations, strain B6-12T represents a novel species in the genus Kaistia , for which the name Kaistia defluvii sp. nov. is proposed. The type strain is B6-12T ( = KCTC 23766T  = JCM 18034T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1496-1502 ◽  
Author(s):  
Jin Li ◽  
Yan Xu ◽  
Jiarong Feng ◽  
Mingqi Zhong ◽  
Qingyi Xie ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped marine bacterium, CW2-9T, was isolated from algae collected from Fujian Province in PR China. 16S rRNA gene sequence analysis showed that this strain was affiliated with the genus Tamlana in the family Flavobacteriaceae of the class Flavobacteriia and was very similar to the type strain Tamlana sedimentorum MCCC 1A10799T (96.3 % sequence similarity). The whole genome of strain CW2-9T comprised 3 997 513 bp with a G+C content of 34.3 mol%. The average nucleotide identity value between strain CW2-9T and T. sedimentorum MCCC 1A10799T was 73.8 %. Growth was observed from 15 to 40 °C (optimum, 30 °C), at pH from pH 5.0 to 10.0 (pH 8.0) and in the presence of 0–4 % (w/v) NaCl (0–1 %). The major fatty acids (>10 % of the total) were iso-C15 : 0, iso G-C15 : 1, iso-C17 : 0 3-OH and anteiso-C15 : 0. The predominant menaquinone was MK-6. The combined phylogenetic, physiological and chemotaxonomic data indicate that strain CW2-9T represents a novel species in the genus Tamlana , for which the name Tamlana fucoidanivorans sp. nov. is proposed. The type strain is CW2-9T (=CICC 24749T=KCTC 72389T).


Sign in / Sign up

Export Citation Format

Share Document