scholarly journals Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce)

2005 ◽  
Vol 55 (1) ◽  
pp. 423-426 ◽  
Author(s):  
Chiu-Chung Young ◽  
Peter Kämpfer ◽  
Fo-Ting Shen ◽  
Wei-An Lai ◽  
A. B. Arun

A yellow-pigmented bacterial strain (CC-H3-2T), isolated from the rhizosphere of Lactuca sativa L. (garden lettuce) in Taiwan, was investigated using a polyphasic taxonomic approach. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Chryseobacterium, with the highest sequence similarity to the type strains of Chryseobacterium indoltheticum (97·7 %), Chryseobacterium scophthalmum (97·5 %), Chryseobacterium joostei (97·2 %) and Chryseobacterium defluvii (97·2 %). The major whole-cell fatty acids were iso-C15 : 0 (52·2 %) and iso-C17 : 0 3-OH. DNA–DNA hybridization experiments revealed levels of only 27·4 % to C. scophthalmum, 27·1 % to C. indoltheticum, 14·1 % to C. joostei and 7·8 % to C. defluvii. DNA–DNA relatedness and biochemical and chemotaxonomic properties demonstrate that strain CC-H3-2 T represents a novel species, for which the name Chryseobacterium formosense sp. nov. is proposed. The type strain is CC-H3-2T (=CCUG 49271T=CIP 108367T).

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246533
Author(s):  
Mo Ping ◽  
Zhao Yun-Lin ◽  
Liu Jun ◽  
Gao Jian ◽  
Xu Zheng-Gang

The taxonomic relationship of Lentzea atacamensis and Lentzea deserti were re-evaluated using comparative genome analysis. The 16S rRNA gene sequence analysis indicated that the type strains of L. atacamensis and L. deserti shared 99.7% sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the genomes of two type strains were 88.6% and 98.8%, respectively, greater than the two recognized thresholds values of 70% dDDH and 95–96% ANI for bacterial species delineation. These results suggested that L. atacamensis and L. deserti should share the same taxonomic position. And this conclusion was further supported by similar phenotypic and chemotaxonomic features between them. Therefore, we propose that L. deserti is a later heterotypic synonym of L. atacamensis.


2011 ◽  
Vol 61 (7) ◽  
pp. 1515-1520 ◽  
Author(s):  
Jaewoo Yoon ◽  
Satoru Matsuda ◽  
Kyoko Adachi ◽  
Hiroaki Kasai ◽  
Akira Yokota

A Gram-negative-staining, obligately aerobic, non-motile, rod-shaped and chemoheterotrophic bacterium, designated strain MN1-1006T, was isolated from an ascidian (sea squirt) sample, and was studied using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate shared approximately 93–99% sequence similarity with recognized species of the genus Rubritalea within the phylum ‘Verrucomicrobia’. DNA–DNA hybridization values between strain MN1-1006T and Rubritalea squalenifaciens HOact23T and Rubritalea sabuli YM29-052T were 57% and 14.5%, respectively. Strain MN1-1006T produced carotenoid compounds that rendered the cell biomass a reddish pink colour. The strain also contained squalene. The cell-wall peptidoglycan of the novel strain contained muramic acid and meso-diaminopimelic acid. The DNA G+C content of strain MN1-1006T was 51.4 mol%. The major cellular fatty acids were iso-C14:0, iso-C16:0 and anteiso-C15:0. The major isoprenoid quinone was MK-9. On the basis of these data, it was concluded that strain MN1-1006T represents a novel species of the genus Rubritalea, for which the name Rubritalea halochordaticola sp. nov. is proposed. The type strain is MN1-1006T ( = KCTC 23186T = NBRC 107102T).


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2811-2815 ◽  
Author(s):  
Honghui Zhu ◽  
Shumei Jiang ◽  
Qing Yao ◽  
Yonghong Wang ◽  
Meibiao Chen ◽  
...  

An actinomycete, designated strain GIMN4.003T, was isolated from seawater collected in Sanya, China. It produced white aerial mycelium and yellow substrate mycelium on Gause’s synthetic agar medium no. 1. The substrate mycelium colour was not sensitive to pH. Scanning electron microscopy observations revealed that GIMN4.003T produced straight to flexuous spore chains of rough to warty spores. ll-Diaminopimelic acid was present in the cell-wall hydrolysate. Based on chemotaxonomy and morphological features, strain GIMN4.003T was identified as a member of the genus Streptomyces. Melanin was not produced. No antimicrobial activity was detected against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Penicillium citrinum or Candida albicans. Analysis of the 16S rRNA gene sequence revealed that the highest sequence similarity was to Streptomyces radiopugnans R97T (99.0 %). However, DNA relatedness between GIMN4.003T and S. radiopugnans DSM 41901T was low (41.24±1.47 %). Furthermore, the morphological, physiological and biochemical characteristics of strain GIMN4.003T were different from those of S. radiopugnans DSM 41901T and the type strains of other closely related Streptomyces species. On the basis of its physiological and molecular properties, it is evident that strain GIMN4.003T ( = CCTCCM 208215T  = NRRL B-24801T) represents the type strain of a novel species within the genus Streptomyces, for which the name Streptomyces fenghuangensis sp. nov. is proposed.


2007 ◽  
Vol 57 (9) ◽  
pp. 1966-1969 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, rod-shaped bacterium, IG8T, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8T represented a separate lineage within the genus Loktanella; the highest 16S rRNA gene sequence similarity values were found with the type strains of Loktanella salsilacus (98.6 %) and Loktanella fryxellensis (98.4 %). DNA–DNA hybridization values between strain IG8T and the type strains of L. salsilacus (27.9–36.1 %) and L. fryxellensis (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA G+C content of strain IG8T was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, Loktanella atrilutea sp. nov. The type strain is IG8T (=IAM 15450T=NCIMB 14280T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2908-2912 ◽  
Author(s):  
Young-Ok Kim ◽  
Hee Jeong Kong ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Kyung-Kil Kim ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming and short rod- or rod-shaped bacterial strain, designated 22-5T, was isolated from a bluespotted cornetfish, Fistularia commersonii, and subjected to taxonomic study. Strain 22-5T grew optimally at 30 °C and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 22-5T belonged to the genus Paracoccus and joined the cluster comprising Paracoccus homiensis DD-R11T and Paracoccus zeaxanthinifaciens ATCC 21588T, with which strain 22-5T exhibited 97.4 and 96.9 % 16S rRNA gene sequence similarity, respectively. Strain 22-5T exhibited 94.0–96.6 % 16S rRNA gene sequence similarity with the other type strains of species of the genus Paracoccus. Strain 22-5T contained Q-10 as the predominant menaquinone and C18 : 1 ω7c as the predominant fatty acid. In this study, P. zeaxanthinifaciens KCTC 22688T also contained Q-10 as the predominant isoprenoid quinone. The DNA G+C content of strain 22-5T was 63.6 mol%. Strain 22-5T exhibited 44 and 32 % DNA–DNA relatedness to P. homiensis KACC 11518T and P. zeaxanthinifaciens KCTC 22688T, respectively. On the basis of phenotypic, phylogenetic and genetic data, strain 22-5T is considered to represent a novel species of the genus Paracoccus, for which the name Paracoccus fistulariae sp. nov. is proposed. The type strain is 22-5T (=KCTC 22803T =CCUG 58401T).


2004 ◽  
Vol 54 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Costantino Vetriani ◽  
Mark D. Speck ◽  
Susan V. Ellor ◽  
Richard A. Lutz ◽  
Valentin Starovoytov

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1305-1310 ◽  
Author(s):  
Jan Hendrik Wübbeler ◽  
Tina Lütke-Eversloh ◽  
Stefanie Van Trappen ◽  
Peter Vandamme ◽  
Alexander Steinbüchel

In this study, a novel betaproteobacterium, strain DPN7T, was isolated under mesophilic conditions from compost because of its capacity to utilize the organic disulfide 3,3′-dithiodipropionic acid. Analysis of the 16S rRNA gene sequence of strain DPN7T revealed 98.5 % similarity to that of Tetrathiobacter kashmirensis LMG 22695T. Values for sequence similarity to members of the genera Alcaligenes, Castellaniella and Taylorella, the nearest neighbours of the genus Tetrathiobacter, were about 95 % or less. The DNA G+C content of strain DPN7T was 55.1 mol%. The level of DNA–DNA hybridization between strain DPN7T and T. kashmirensis LMG 22695T was 41 %, whereas it was much lower between strain DPN7T and Alcaligenes faecalis LMG 1229T (7 %) or Castellaniella defragrans LMG 18538T (5 %). This genotypic divergence was supported by differences in biochemical and chemotaxonomic characteristics. For this reason, and because of the differences in the protein and fatty acid profiles, strain DPN7T should be classified within a novel species of Tetrathiobacter, for which the name Tetrathiobacter mimigardefordensis sp. nov. is proposed. The type strain is strain DPN7T (=DSM 17166T=LMG 22922T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2089-2095 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-motile, pleomorphic bacterial strains, DS-40T and DS-45T, were isolated from a soil sample collected from Dokdo, Korea, and their exact taxonomic positions were investigated by using a polyphasic approach. Strains DS-40T and DS-45T grew optimally at 25 °C and pH 6.5–7.5 in the presence of 0–1.0 % (w/v) NaCl. They contained MK-7 as the predominant menaquinone and possessed iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C contents of strains DS-40T and DS-45T were 36.0 and 36.8 mol%, respectively. Strains DS-40T and DS-45T shared a 16S rRNA gene sequence similarity of 96.7 % and demonstrated a mean DNA–DNA relatedness level of 12 %. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains DS-40T and DS-45T were most closely phylogenetically affiliated with the genus Pedobacter of the family Sphingobacteriaceae. Strains DS-40T and DS-45T exhibited 16S rRNA gene sequence similarity values of 91.4–93.7 and 89.9–91.6 % with respect to the type strains of Pedobacter and Sphingobacterium species, respectively. Phenotypic and chemotaxonomic properties, together with the phylogenetic data, support the assignment of strains DS-40T and DS-45T as two distinct species within the genus Pedobacter. On the basis of phenotypic, phylogenetic and genetic data, strains DS-40T and DS-45T represent two novel species of the genus Pedobacter, for which the names Pedobacter lentus sp. nov. and Pedobacter terricola sp. nov. are proposed, respectively. The respective type strains are DS-40T (=KCTC 12875T=JCM 14593T) and DS-45T (=KCTC 12876T=JCM 14594T).


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chandandeep Kaur ◽  
Anil Kumar Pinnaka ◽  
Nitin Kumar Singh ◽  
Monu Bala ◽  
Shanmugam Mayilraj

A Gram-positive, yellowish bacterium strain AK-1Twas isolated from soil sample collected from peanut (Arachis hypogaea) crop field and studied by using a polyphasic approach. The organism had morphological and chemotaxonomic properties consistent with its classification in the genusAgromyces. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain AK-1Twas closely related toAgromyces aurantiacus(98.6%) followed byAgromyces soli(98.3%),Agromyces tropicus(97.6%),Agromyces ulmi(97.3%),Agromyces flavus(97.2%), andAgromyces italicus(97.0%), whereas the sequence similarity values with respect to the otherAgromycesspecies with validly published names were between 95.3 and 96.7 %. However, the DNA-DNA hybridization values obtained between strain AK-1Tand other related strains were well below the threshold that is required for the proposal of a novel species. The DNAG+Ccontent of the strain is 71.8 mol%. The above data in combination with the phenotypic distinctiveness of AK-1Tclearly indicate that the strain represents a novel species, for which the nameAgromyces arachidissp. nov. is proposed. The type strain is AK-1T(=MTCC 10524T= JCM 19251T).


Sign in / Sign up

Export Citation Format

Share Document