scholarly journals Psychrobacter cibarius sp. nov., isolated from jeotgal, a traditional Korean fermented seafood

2005 ◽  
Vol 55 (2) ◽  
pp. 577-582 ◽  
Author(s):  
Seo-Youn Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh ◽  
Yong-Ha Park ◽  
Jung-Hoon Yoon

Two novel Psychrobacter-like bacterial strains, JG-219T and JG-220, were isolated from jeotgal, a traditional Korean fermented seafood. Cells of strains JG-219T and JG-220 were Gram-negative, non-motile coccobacilli. Growth of the two strains was observed at 4–32 °C. They grew optimally in the presence of 2–5 % (w/v) NaCl. Strains JG-219T and JG-220 contained C18 : 1 ω9c and C17 : 1 ω8c as the major fatty acids and Q-8 as the predominant ubiquinone. The DNA G+C contents of strains JG-219T and JG-220 were 43·5 and 43·0 mol%, respectively. The two strains showed no difference in their 16S rRNA gene sequences but exhibited minor differences in their phenotypic properties. Strains JG-219T and JG-220 exhibited levels of 16S rRNA gene sequence similarity of 95·2–98·7 % to the type strains of recognized Psychrobacter species. The mean level of DNA–DNA relatedness between strains JG-219T and JG-220 was 84·4 %. The two strains exhibited levels of DNA–DNA relatedness of 1·5–32·9 % to the type strains of eight phylogenetically related Psychrobacter species. On the basis of phenotypic data and phylogenetic and genetic distinctiveness, the two strains were classified as representing a novel species within the genus Psychrobacter, Psychrobacter cibarius sp. nov. The type strain is JG-219T (=KCTC 12256T=DSM 16327T).

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3439-3446 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2–98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8–97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA–DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7–5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).


Author(s):  
Sooyeon Park ◽  
Mi-Hwa Lee ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, motile, rod-shaped bacterial strain, GSW-M6T, was isolated from seawater of Geoje island, Korea, and was subjected to a polyphasic taxonomic study. Strain GSW-M6T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain GSW-M6T clustered with Thalassobius aestuarii, Thalassobius gelatinovorus and Thalassobius mediterraneus. Strain GSW-M6T exhibited 96.2–96.9 % 16S rRNA gene sequence similarity to the type strains of these three Thalassobius species. Strain GSW-M6T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profiles of strain GSW-M6T and the type strains of the three Thalassobius species were similar, with phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid as common major components. The DNA G+C content of strain GSW-M6T was 57 mol%. The mean level of DNA–DNA relatedness between strain GSW-M6T and the type strain of Thalassobius gelatinovorus was 17 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, enabled strain GSW-M6T to be differentiated from recognized species of the genus Thalassobius. On the basis of the data presented, strain GSW-M6T is considered to represent a novel species of the genus Thalassobius, for which the name Thalassobius maritimus sp. nov. is proposed. The type strain is GSW-M6T ( = KCTC 23347T  = CCUG 60021T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4873-4879 ◽  
Author(s):  
Sooyeon Park ◽  
Sona Kim ◽  
Chul-Hyung Kang ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, motile, aerobic and rod-shaped bacterium, designated HJM-18T, was isolated from the place where the ocean and a freshwater lake meet at Hwajinpo, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain HJM-18T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain HJM-18T belonged to the genus Marinobacter. Strain HJM-18T exhibited 16S rRNA gene sequence similarity values of 97.05–98.22 % to the type strains of Marinobacter algicola, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter salarius, Marinobacter salsuginis, Marinobacter guineae and Marinobacter gudaonensis and of 93.21–96.98 % to the type strains of the other species of the genus Marinobacter. Strain HJM-18T contained Q-9 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω9c as the major fatty acids. The major polar lipids detected in strain HJM-18T were phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminophospholipid. The DNA G+C content was 58 mol% and the mean DNA–DNA relatedness values with the type strains of the seven phylogenetically related species of the genus Marinobacter were 10–27 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain HJM-18T is separated from recognized species of the genus Marinobacter. On the basis of the data presented, strain HJM-18T represents a novel species of the genus Marinobacter, for which the name Marinobacter confluentis sp. nov. is proposed. The type strain is HJM-18T ( = KCTC 42705T = NBRC 111223T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2890-2895 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Sung-Min Won ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-flagellated, non-gliding, aerobic and rod-shaped bacterium, designated TYO-19T, was isolated from an oyster collected from the South Sea in South Korea, and was subjected to a taxonomic study using a polyphasic approach. Strain TYO-19T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0  % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain TYO-19T belonged to the genus Winogradskyella, clustering coherently with the type strain of Winogradskyella epiphytica. Strain TYO-19T exhibited a 16S rRNA gene sequence similarity value of 99.7  % to W. epiphytica KMM 3906T and 94.2–96.9  % to the type strains of other species of the genus Winogradskyella. Strain TYO-19T contained MK-6 as the predominant menaquinone and iso-C15[hairsp] :[hairsp] 1 G, iso-C17[hairsp] :[hairsp] 0 3-OH, iso-C15[hairsp] :[hairsp] 0 and anteiso-C15[hairsp] :[hairsp] 0 as the major fatty acids. The major polar lipids detected in strain TYO-19T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.0 mol% and the mean DNA–DNA relatedness value with the type strain of W. epiphytica was 59 ± 4.3  %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain TYO-19T is separated from recognized species of the genus Winogradskyella. On the basis of the data presented, strain TYO-19T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella crassostreae sp. nov. is proposed. The type strain is TYO-19T  ( = KCTC 42462T = NBRC 110924T).


2010 ◽  
Vol 60 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-negative, motile and pleomorphic bacterial strain, SMK-146T, was isolated from a tidal flat sediment of the Yellow Sea, Korea, and its taxonomic position was investigated. Strain SMK-146T grew optimally at pH 7.0–8.0 and 30 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and 11-methyl C18 : 1 ω7c as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 68.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SMK-146T belongs to the genus Jannaschia. Strain SMK-146T exhibited 16S rRNA gene sequence similarity values of 95.3–97.0 % to the type strains of the five recognized Jannaschia species. The mean DNA–DNA relatedness value between strain SMK-146T and Jannaschia seosinensis KCCM 42114T, the closest phylogenetic neighbour, was 17 %. Differential phenotypic properties also revealed that strain SMK-146T differs from the recognized Jannaschia species. On the basis of phenotypic, phylogenetic and genetic data, strain SMK-146T represents a novel species of the genus Jannaschia, for which the name Jannaschia seohaensis sp. nov. is proposed. The type strain is SMK-146T (=KCTC 22172T =CCUG 55326T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 511-514 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, YCS-5T, was isolated from seawater off the southern coast of Korea. Strain YCS-5T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain YCS-5T fell within the clade comprising Kangiella species. Strain YCS-5T exhibited 16S rRNA gene sequence similarity values of 96.6, 95.7 and 97.9 % to the type strains of Kangiella koreensis, Kangiella aquimarina and Kangiella japonica, respectively, and less than 89.8 % to strains of other species used in the phylogenetic analysis. Strain YCS-5T contained Q-8 as the predominant ubiquinone and iso-C17 : 0, iso-C15 : 0, iso-C11 : 0 3-OH and iso-C17 : 1ω9c as the major fatty acids. The polar lipid profile of strain YCS-5T was similar to that of K. koreensis SW-125T, with phosphatidylglycerol and an unidentified aminolipid as major polar lipids. The DNA G+C content was 47 mol%. The mean DNA–DNA relatedness value between strain YCS-5T and K. japonica JCM 16211T was 12 %. Differential phenotypic properties and the phylogenetic and genetic distinctiveness of strain YCS-5T demonstrated that this strain is distinguishable from other Kangiella species. On the basis of the data presented, strain YCS-5T is considered to represent a novel species of the genus Kangiella, for which the name Kangiella geojedonensis sp. nov. is proposed; the type strain is YCS-5T ( = KCTC 23420T = CCUG 60526T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2543-2549 ◽  
Author(s):  
Zhe-Xue Quan ◽  
Hee-Sung Bae ◽  
Jong-Hwan Baek ◽  
Wen-Feng Chen ◽  
Wan-Taek Im ◽  
...  

A polyphasic study was carried out to determine the taxonomic position of two aerobic, cyanide-degrading bacterial strains, designated L61T and L22, which had been isolated from a bioreactor for the treatment of nickel-complexed cyanide. The two isolates exhibited almost identical taxonomic characteristics. Phylogenetic analysis inferred from comparative 16S rRNA gene sequences indicated that the isolates fall in a sublineage of the genus Rhizobium comprising the type strains of Rhizobium giardinii, Rhizobium radiobacter, Rhizobium rubi, Rhizobium larrymoorei, Rhizobium vitis, Rhizobium undicola, Rhizobium loessense, Rhizobium galegae and Rhizobium huautlense. Cells of the two isolates are Gram-negative, aerobic, motile and non-spore-forming rods (0·6–0·7×1·1–1·3 μm), with peritrichous flagella. The DNA G+C content is 60·1–60·9 mol%. Cellular fatty acids are C16 : 0 (2·2–3·3 %), C18 : 0 (2·1–3·2 %), C19 : 0 cyclo ω8c (9·9–16·8 %), C20 : 3 ω6,9,12c (2·7–3·3 %), summed feature 3 (7·2–7·7 %) and summed feature 7 (67·8–73·7 %). The strains formed nodules on a legume plant, Medicago sativa. A nifH gene encoding denitrogenase reductase, the key component of the nitrogenase enzyme complex, was detected in L61T by PCR amplification by using a nifH-specific primer system. Strains L61T and L22 were distinguished from the type strains of recognized Rhizobium species in the same sublineage based on low DNA–DNA hybridization values (2–4 %) and/or a 16S rRNA gene sequence similarity value of less than 96 %. Moreover, some phenotypic properties with respect to substrate utilization as a carbon or nitrogen source, antibiotic resistance and growth conditions could be used to discriminate L61T and L22 from Rhizobium species in the same sublineage. Based on the results obtained in this study, L61T and L22 are considered to be representatives of a novel species of Rhizobium, for which the name Rhizobium daejeonense sp. nov. is proposed. The type strain is L61T (=KCTC 12121T=IAM 15042T=CCBAU 10050T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2462-2466 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterial strain, DS-57T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated using a polyphasic approach. It grew optimally at 25 °C and in trypticase soy broth without NaCl and trypticase soy broth with 0.5 % NaCl. Strain DS-57T contained MK-7 as the predominant menaquinone and iso-C15 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C17 : 0 3-OH as the major fatty acids. The DNA G+C content was 39.7 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-57T was most closely related to the genus Pedobacter of the family Sphingobacteriaceae, clustering coherently with Pedobacter suwonensis, Pedobacter roseus and Pedobacter sandarakinus. Strain DS-57T exhibited 16S rRNA gene sequence similarity values of 99.2, 97.9 and 97.2 % with respect to the type strains of P. suwonensis, P. roseus and P. sandarakinus, respectively, and values less than 95.6 % with respect to the type strains of other Pedobacter species. Strain DS-57T exhibited levels of DNA–DNA relatedness of 45, 17 and 15 % with respect to the type strains of P. suwonensis, P. roseus and P. sandarakinus, respectively. Differential phenotypic properties, together with the phylogenetic distinctiveness and the DNA–DNA relatedness data, were sufficient to allow the classification of strain DS-57T as a species that is separate from recognized Pedobacter species. On the basis of phenotypic properties and phylogenetic distinctiveness, therefore, strain DS-57T represents a novel species of the genus Pedobacter, for which the name Pedobacter terrae sp. nov. is proposed. The type strain is DS-57T (=KCTC 12762T=DSM 17933T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 418-423 ◽  
Author(s):  
Shan Gao ◽  
Wen-Bin Zhang ◽  
Xia-Fang Sheng ◽  
Lin-Yan He ◽  
Zhi Huang

A Gram-stain-negative, aerobic, yellow-pigmented, non-motile, non-spore-forming, rod-shaped bacterial strain, Z29T, was isolated from the surface of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain Z29T belongs to the genus Chitinophaga in the family Chitinophagaceae . Levels of 16S rRNA gene sequence similarity between strain Z29T and the type strains of recognized species of the genus Chitinophaga ranged from 92.7 to 98.2 %. The main fatty acids of strain Z29T were iso-C15 : 0, C16 : 1ω5c and iso-C17 : 0 3-OH. It also contained menaquinone 7 (MK-7) as the respiratory quinone and homospermidine as the main polyamine. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids, unknown phospholipids and unknown lipids. The total DNA G+C content of strain Z29T was 51.3 mol%. Phenotypic properties and chemotaxonomic data supported the affiliation of strain Z29T with the genus Chitinophaga . The low level of DNA–DNA relatedness (ranging from 14.6 to 29.8 %) to the type strains of other species of the genus Chitinophaga and differential phenotypic properties demonstrated that strain Z29T represents a novel species of the genus Chitinophaga , for which the name Chitinophaga longshanensis sp. nov. is proposed. The type strain is Z29T ( = CCTCC AB 2014066T = LMG 28237T).


Author(s):  
Yong-Taek Jung ◽  
Soo-Young Lee ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-sporulating, non-flagellated rod, designated BR-9T, was isolated from soil collected on the Korean peninsula. Strain BR-9T grew optimally at pH 6.0–7.0, at 30 °C and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BR-9T belonged to the genus Pedobacter and clustered with Pedobacter insulae DS-139T and Pedobacter koreensis WPCB189T. Strain BR-9T exhibited 98.2 and 97.5 % 16S rRNA gene sequence similarity with P. insulae DS-139T and P. koreensis WPCB189T, respectively, and <96.7 % sequence similarity with the type strains of other species in the genus Pedobacter. Strain BR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content of strain BR-9T was 38.5 mol%. DNA–DNA relatedness between strain BR-9T and P. insulae DS-139T and P. koreensis KCTC 12536T was 3.4–4.2 %, which indicated that the isolate was genetically distinct from these type strains. Strain BR-9T was also distinguishable by differences in phenotypic properties. On the basis of the data presented, strain BR-9T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter boryungensis sp. nov. is proposed. The type strain is BR-9T ( = KCTC 23344T  = CCUG 60024T).


Sign in / Sign up

Export Citation Format

Share Document