scholarly journals ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex

2006 ◽  
Vol 56 (7) ◽  
pp. 1593-1597 ◽  
Author(s):  
Ing-Ming Lee ◽  
Kristi D. Bottner ◽  
Gary Secor ◽  
Viviana Rivera-Varas

Potato purple top wilt (PPT) is a devastating disease that occurs in various regions of North America and Mexico. At least three distinct phytoplasma strains belonging to three different phytoplasma groups (16SrI, 16SrII and 16SrVI) have been associated with this disease. A new disease with symptoms similar to PPT was recently observed in Texas and Nebraska, USA. Two distinct phytoplasma strain clusters were identified. One belongs to the 16SrI phytoplasma group, subgroup A, and the other is a novel phytoplasma that is most closely related to, and shares 96.6 % 16S rRNA gene sequence similarity with, a member of group 16SrXII. Phylogenetic analysis of 16S rRNA gene sequences of the novel PPT-associated phytoplasma strains, previously described ‘Candidatus Phytoplasma’ organisms and other distinct unnamed phytoplasmas indicated that the novel phytoplasma, termed American potato purple top wilt (APPTW) phytoplasma, represents a distinct lineage and shares a common ancestor with stolbur phytoplasma, ‘Candidatus Phytoplasma australiense’, ‘Candidatus Phytoplasma japonicum’, ‘Candidatus Phytoplasma fragariae’, bindweed yellows phytoplasma (IBS), ‘Candidatus Phytoplasma caricae’ and ‘Candidatus Phytoplasma graminis’. On the basis of unique 16S rRNA gene sequences and biological properties, it is proposed that the APPTW phytoplasma represents ‘Candidatus Phytoplasma americanum’, with APPTW12-NE as the reference strain.

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2822-2826 ◽  
Author(s):  
I.-M. Lee ◽  
K. D. Bottner-Parker ◽  
Y. Zhao ◽  
W. Villalobos ◽  
L. Moreira

A novel phytoplasma, designated strain SoyST1c1, associated with a newly emerging disease in soybean (Glycine max), known as soybean stunt (SoyST), was found in 2002 in a soybean plantation in Alajuela Province, Costa Rica. The same phytoplasma, or a very closely related strain, also infected sweet pepper (Capsicum annuum) with purple vein syndrome (SwPPV) and passion fruit vine (Passiflora edulis) with bud proliferation disease (PasFBP) in the same region. Sequence analysis of cloned 16S rRNA gene sequences (GenBank accession nos FJ226068–FJ226073 and HQ225624–HQ225635) indicated that all three affected plants were infected by phytoplasmas that shared <97.5 % sequence similarity with previously described phytoplasmas. The SoyST-causing phytoplasma represents a new taxon, most closely related to phytoplasma group 16SrI and 16SrXII strains. Virtual RFLP analysis indicated that the SoyST-causing phytoplasma and its closely related strains represent a novel 16Sr group, designated 16SrXXXI. Phylogenetic analysis of 16S rRNA gene sequences from the new phytoplasma strains, those previously described as ‘Candidatus Phytoplasma spp.’ and other distinct, as yet unnamed, phytoplasmas indicated that the SoyST-causing phytoplasma represents a distinct lineage within the aster yellows/stolbur branch on the phylogenetic tree. On the basis of its unique 16S rRNA gene sequence and biological properties, strain SoyST1c1 represents a novel taxon, for which the name ‘Candidatus Phytoplasma costaricanum’ is proposed with SoyST1c1 as the reference strain.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1902-1907 ◽  
Author(s):  
Bédis Dridi ◽  
Marie-Laure Fardeau ◽  
Bernard Ollivier ◽  
Didier Raoult ◽  
Michel Drancourt

During attempts to obtain novel, human-associated species of the domain Archaea , a coccoid micro-organism, designated strain B10T, was isolated in pure culture from a sample of human faeces collected in Marseille, France. On the basis of its phenotypic characteristics and 16S rRNA and mcrA gene sequences, the novel strain was classified as a methanogenic archaeon. Cells of the strain were non-motile, Gram-staining-positive cocci that were approximately 850 nm in diameter and showed autofluorescence at 420 nm. Cells were lysed by 0.1 % (w/v) SDS. With hydrogen as the electron donor, strain B10T produced methane by reducing methanol. The novel strain was unable to produce methane when hydrogen or methanol was the sole energy source. In an atmosphere containing CO2, strain B10T could not produce methane from formate, acetate, trimethylamine, 2-butanol, 2-propanol, cyclopentanol, 2-pentanol, ethanol, 1-propanol or 2,3-butanediol. Strain B10T grew optimally with 0.5–1.0 % (w/v) NaCl, at pH 7.6 and at 37 °C. It required tungstate-selenite for growth. The complete genome of the novel strain was sequenced; the size of the genome was estimated to be 2.05 Mb and the genomic DNA G+C content was 59.93 mol%. In phylogenetic analyses based on 16S rRNA gene sequences, the highest sequence similarities (98.0–98.7 %) were seen between strain B10T and several uncultured, methanogenic Archaea that had been collected from the digestive tracts of a cockroach, a chicken and mammals. In the same analysis, the non-methanogenic ‘Candidatus Aciduliprofundum boonei’ DSM 19572 was identified as the cultured micro-organism that was most closely related to strain B10T (83.0 % 16S rRNA gene sequence similarity). Each of the three treeing algorithms used in the analysis of 16S rRNA gene sequences indicated that strain B10T belongs to a novel order that is distinct from the Thermoplasmatales . The novel strain also appeared to be distinct from Methanosphaera stadtmanae DSM 3091T (72.9 % 16S rRNA gene sequence similarity), another methanogenic archaeon that was isolated from human faeces and can use methanol in the presence of hydrogen. Based on the genetic and phenotypic evidence, strain B10T represents a novel species of a new genus for which the name Methanomassiliicoccus luminyensis gen. nov., sp. nov. is proposed. The type strain of the type species is B10T ( = DSM 24529T = CSUR P135T).


2007 ◽  
Vol 57 (4) ◽  
pp. 873-877 ◽  
Author(s):  
Yuchao Ma ◽  
Jian Zhang ◽  
Sanfeng Chen

Five endospore-forming, nitrogen-fixing strains were isolated from rhizosphere soils of Zanthoxylum simulans planted in Beijing, China. Phylogenetic analysis based on full-length 16S rRNA gene sequences revealed that the five strains formed a distinct cluster within the genus Paenibacillus. High levels of 16S rRNA gene sequence similarity were found between these novel strains and Paenibacillus azotofixans ATCC 35681T (97.8–98.5 % similarity) and Paenibacillus stellifer DSM 14472T (95.4–96.3 %). Levels of 16S rRNA gene sequence similarity between the novel isolates and other species of the genus Paenibacillus were less than 95.0 %. Levels of 16S rRNA gene sequence similarity among the isolates were more than 98.0 %. DNA–DNA relatedness between the five novel isolates and P. azotofixans ATCC 35681T was 45.50–47.45 % and relatedness among the five novel strains was 95.8–99.6 %. A significant feature of the novel strains that differentiated them from P. azotofixans and other Paenibacillus species was that none of the novel strains could produce acid or gas from the following various carbohydrates: glucose, sucrose, lactose, fructose, glycerol, xylose, maltose, d-sorbitol, sodium succinate, sodium citrate, glycine or l-aspartate. Anteiso-branched C15 : 0 was the major fatty acid component (36.59 %) of novel strain JH29T. On the basis of phenotypic properties, 16S rRNA gene sequences, DNA G+C content, DNA–DNA hybridization, chemotaxonomic properties and the nifH gene sequence, the five novel strains form a very homogeneous group which is different from other related species within the genus Paenibacillus. Therefore, the five novel strains are considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus zanthoxyli sp. nov. is proposed. The type strain is JH29T (=CCBAU 10243T=DSM 18202T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1542-1549 ◽  
Author(s):  
Zong-Jie Wang ◽  
Qian-Qian Liu ◽  
Li-Hua Zhao ◽  
Zong-Jun Du ◽  
Guan-Jun Chen

A novel Gram-stain-negative, rod-shaped, gliding, facultatively anaerobic, oxidase-negative and catalase-positive bacterium, designated FA350T, was isolated from coastal sediment from Xiaoshi Island, Weihai, China. Strain FA350T showed growth on modified nutrient agar supplemented with 0.1 % d-(+)-trehalose and with distilled water replaced by seawater. Optimal growth occurred at 33 °C and pH 8.5 with 4 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FA350T belongs to a novel bacterial order in the class Deltaproteobacteria , and the most closely related type strains belong to the order Desulfuromonadales , with 85.1–85.6 % 16S rRNA gene sequence similarity. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and two unknown phospholipids. Major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 1ω10c and menaquinone MK-7 was the sole respiratory quinone. The DNA G+C content of strain FA350T was 60.3 mol%. The isolate and closely related environmental clones formed a novel order-level clade in the class Deltaproteobacteria . Comparative analysis of 16S rRNA gene sequences and characterization indicated that strain FA350T may represent a novel order of the Deltaproteobacteria . Here, we propose the name Bradymonas sediminis gen. nov., sp. nov. to accommodate strain FA350T. The type strain of Bradymonas sediminis is FA350T ( = DSM 28820T = CICC 10904T); Bradymonadales ord. nov. and Bradymonadaceae fam. nov. are also proposed to accommodate the novel taxon.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2012 ◽  
Vol 62 (2) ◽  
pp. 322-329 ◽  
Author(s):  
William J. Wolfgang ◽  
An Coorevits ◽  
Jocelyn A. Cole ◽  
Paul De Vos ◽  
Michelle C. Dickinson ◽  
...  

Twelve independent isolates of a Gram-positive, endospore-forming rod were recovered from clinical specimens in New York State, USA, and from raw milk in Flanders, Belgium. The 16S rRNA gene sequences for all isolates were identical. The closest species with a validly published name, based on 16S rRNA gene sequence, is Sporosarcina koreensis (97.13 % similarity). DNA–DNA hybridization studies demonstrate that the new isolates belong to a species distinct from their nearest phylogenetic neighbours. The partial sequences of the 23S rRNA gene for the novel strains and their nearest neighbours also provide support for the novel species designation. Maximum-likelihood phylogenetic analysis of the 16S rRNA gene sequences confirmed that the new isolates are in the genus Sporosarcina. The predominant menaquinone is MK-7, the peptidoglycan has the type A4α l-Lys–Gly–d-Glu, and the polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant fatty acids are iso-C14 : 0, iso-C15 : 0 and anteiso-C15 : 0. In addition, biochemical and morphological analyses support designation of the twelve isolates as representatives of a single new species within the genus Sporosarcina, for which the name Sporosarcina newyorkensis sp. nov. (type strain 6062T  = DSM 23544T  = CCUG 59649T  = LMG 26022T) is proposed.


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2130-2134 ◽  
Author(s):  
Sha Liu ◽  
Dong Jin ◽  
Ruiting Lan ◽  
Yiting Wang ◽  
Qiong Meng ◽  
...  

The taxonomic position of a group of seven closely related lactose-negative enterobacterial strains, which were isolated from fresh faecal samples of Marmota himalayana collected from the Qinghai-Tibetan plateau, China, was determined by using a polyphasic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods (0.5–1 × 1–2.5 μm). By 16S rRNA gene sequences, the representative strain, HT073016T, showed highest similarity values with Escherichia fergusonii ATCC 35469T at 99.3 %, Escherichia coli ATCC 11775T at 99.2 %, Escherichia albertii LMG 20976T at 98.9 %, Escherichia hermannii CIP 103176T at 98.4 %, and Escherichia vulneris ATCC 33821T at 97.7 %. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the seven strains formed a monophyletic group with five other species of the genus Escherichia. Digital DNA–DNA hybridization studies between strain HT073016T and five other species of the genus Escherichia showed that it shared less than 70 % DNA–DNA relatedness with all known species of the genus Escherichia, supporting the novel species status of the strain. The DNA G+C content of strain HT073016T was 53.8 mol%. On the basis of phenotypic and phylogenetic characteristics, strain HT073016T and the six other HT073016T-like strains were clearly distinct from the type strains of other recognized species of the genus Escherichia and represent a novel species of the genus Escherichia, for which the name Escherichia marmotae sp. nov. is proposed, with HT073016T ( = CGMCC 1.12862T = DSM 28771T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document