Monoglobus pectinilyticus gen. nov., sp. nov., a pectinolytic bacterium isolated from human faeces.

2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).

2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1902-1907 ◽  
Author(s):  
Bédis Dridi ◽  
Marie-Laure Fardeau ◽  
Bernard Ollivier ◽  
Didier Raoult ◽  
Michel Drancourt

During attempts to obtain novel, human-associated species of the domain Archaea , a coccoid micro-organism, designated strain B10T, was isolated in pure culture from a sample of human faeces collected in Marseille, France. On the basis of its phenotypic characteristics and 16S rRNA and mcrA gene sequences, the novel strain was classified as a methanogenic archaeon. Cells of the strain were non-motile, Gram-staining-positive cocci that were approximately 850 nm in diameter and showed autofluorescence at 420 nm. Cells were lysed by 0.1 % (w/v) SDS. With hydrogen as the electron donor, strain B10T produced methane by reducing methanol. The novel strain was unable to produce methane when hydrogen or methanol was the sole energy source. In an atmosphere containing CO2, strain B10T could not produce methane from formate, acetate, trimethylamine, 2-butanol, 2-propanol, cyclopentanol, 2-pentanol, ethanol, 1-propanol or 2,3-butanediol. Strain B10T grew optimally with 0.5–1.0 % (w/v) NaCl, at pH 7.6 and at 37 °C. It required tungstate-selenite for growth. The complete genome of the novel strain was sequenced; the size of the genome was estimated to be 2.05 Mb and the genomic DNA G+C content was 59.93 mol%. In phylogenetic analyses based on 16S rRNA gene sequences, the highest sequence similarities (98.0–98.7 %) were seen between strain B10T and several uncultured, methanogenic Archaea that had been collected from the digestive tracts of a cockroach, a chicken and mammals. In the same analysis, the non-methanogenic ‘Candidatus Aciduliprofundum boonei’ DSM 19572 was identified as the cultured micro-organism that was most closely related to strain B10T (83.0 % 16S rRNA gene sequence similarity). Each of the three treeing algorithms used in the analysis of 16S rRNA gene sequences indicated that strain B10T belongs to a novel order that is distinct from the Thermoplasmatales . The novel strain also appeared to be distinct from Methanosphaera stadtmanae DSM 3091T (72.9 % 16S rRNA gene sequence similarity), another methanogenic archaeon that was isolated from human faeces and can use methanol in the presence of hydrogen. Based on the genetic and phenotypic evidence, strain B10T represents a novel species of a new genus for which the name Methanomassiliicoccus luminyensis gen. nov., sp. nov. is proposed. The type strain of the type species is B10T ( = DSM 24529T = CSUR P135T).


2005 ◽  
Vol 55 (1) ◽  
pp. 353-362 ◽  
Author(s):  
Patrick J. Blackall ◽  
Henrik Christensen ◽  
Tim Beckenham ◽  
Linda L. Blackall ◽  
Magne Bisgaard

This paper describes a phenotypic and genotypic investigation of the taxonomy of [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium, a major subcluster within the avian 16S rRNA cluster 18 of the family Pasteurellaceae. An extended phenotypic characterization was performed of the type strain of [Haemophilus] paragallinarum, which is NAD-dependent, and eight NAD-independent strains of [Haemophilus] paragallinarum. Complete 16S rRNA gene sequences were obtained for one NAD-independent and four NAD-dependent [Haemophilus] paragallinarum strains. These five sequences along with existing 16S rRNA gene sequences for 11 other taxa within avian 16S rRNA cluster 18 as well as seven other taxa from the Pasteurellaceae were subjected to phylogenetic analysis. The analysis demonstrated that [Haemophilus] paragallinarum, Pasteurella gallinarum, Pasteurella avium and Pasteurella volantium formed a monophyletic group with a minimum of 96·8 % sequence similarity. This group can also be separated by phenotypic testing from all other recognized and named taxa within the Pasteurellaceae. As both genotypic and phenotypic testing support the separate and distinct nature of this subcluster, the transfer is proposed of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium to a new genus Avibacterium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. The type strains are NCTC 1118T (Avibacterium gallinarum), NCTC 11296T (Avibacterium paragallinarum), NCTC 11297T (Avibacterium avium) and NCTC 3438T (Avibacterium volantium). Key characteristics that separate these four species are catalase activity (absent only in Avibacterium paragallinarum) and production of acid from galactose (negative only in Avibacterium paragallinarum), maltose (negative only in Avibacterium avium) and mannitol (negative in Avibacterium gallinarum and Avibacterium avium).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3359-3364 ◽  
Author(s):  
Hong-Min Sun ◽  
Tao Zhang ◽  
Yu-Zhen Wei ◽  
Hong-Yu Liu ◽  
Li-Yan Yu ◽  
...  

A novel aerobic actinomycete, designated strain I12A-02601T, was isolated from a desert soil crusts sample collected from the Shapotou region of Tengger Desert, north-west China. The substrate mycelia of this isolate were well-developed and branched, but not fragmented. The maturity aerial mycelia formed short chains of small, rod-shaped spores. The strain contained ll-diaminopimelic acid, dd-diaminopimelic acid, galactose, glucose, ribose and xylose in its whole-cell hydrolysates. The polar lipids consisted of diphosphatidylglycerol, N-acetylglucosamine-containing phospholipids, phosphatidylinositolmannoside and glycolipids. The predominant menaquinones were MK-10(H6) and MK-10(H8). The major fatty acids were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the genomic DNA was 72.2 mol%. The 16S rRNA gene sequences comparison showed that strain I12A-02601T was most closely related to members of the family Nocardioidaceae, such as Actinopolymorpha alba YIM 48868T (93.3 % sequence similarity), Actinopolymorpha pittospori PIP 143T (93.2 %), and Flindersiella endophytica EUM 378T (93.2 %). In the phylogenetic tree based on 16S rRNA gene sequences, strain I12A-02601T formed a clade with the members of the genera Flindersiella, Thermasporomyces, and Actinopolymorpha in the family Nocardioidaceae. Combined data from this taxonomic study using a polyphasic approach, led to the conclusion that strain I12A-02601T represents a novel species of a new genus in the family Nocardioidaceae, for which the name Tenggerimyces mesophilus gen. nov., sp. nov. is proposed. The type strain of the type species is I12A-02601T ( = CPCC 203544T = DSM 45829T = NBRC 109454T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2289-2295 ◽  
Author(s):  
Madalin Enache ◽  
Takashi Itoh ◽  
Tadamasa Fukushima ◽  
Ron Usami ◽  
Lucia Dumitru ◽  
...  

In order to clarify the current phylogeny of the haloarchaea, particularly the closely related genera that have been difficult to sort out using 16S rRNA gene sequences, the DNA-dependent RNA polymerase subunit B′ gene (rpoB′) was used as a complementary molecular marker. Partial sequences of the gene were determined from 16 strains of the family Halobacteriaceae. Comparisons of phylogenetic trees inferred from the gene and protein sequences as well as from corresponding 16S rRNA gene sequences suggested that species of the genera Natrialba, Natronococcus, Halobiforma, Natronobacterium, Natronorubrum, Natrinema/Haloterrigena and Natronolimnobius formed a monophyletic group in all trees. In the RpoB′ protein tree, the alkaliphilic species Natrialba chahannaoensis, Natrialba hulunbeirensis and Natrialba magadii formed a tight group, while the neutrophilic species Natrialba asiatica formed a separate group with species of the genera Natronorubrum and Natronolimnobius. Species of the genus Natronorubrum were split into two groups in both the rpoB′ gene and protein trees. The most important advantage of the use of the rpoB′ gene over the 16S rRNA gene is that sequences of the former are highly conserved amongst species of the family Halobacteriaceae. All sequences determined so far can be aligned unambiguously without any gaps. On the other hand, gaps are necessary at 49 positions in the inner part of the alignment of 16S rRNA gene sequences. The rpoB′ gene and protein sequences can be used as an excellent alternative molecular marker in phylogenetic analysis of the Halobacteriaceae.


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2007 ◽  
Vol 74 (4) ◽  
pp. 942-949 ◽  
Author(s):  
M. Kozubal ◽  
R. E. Macur ◽  
S. Korf ◽  
W. P. Taylor ◽  
G. G. Ackerman ◽  
...  

ABSTRACT Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP.


2007 ◽  
Vol 57 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Zubair Aslam ◽  
Ju Hyoung Lim ◽  
Wan-Taek Im ◽  
Muhammad Yasir ◽  
Young Ryun Chung ◽  
...  

A novel, moderately halophilic, Gram-positive coccus, designated strain S2R53-5T, was isolated from jeotgal, a traditional Korean fermented seafood. The organism was strictly aerobic, non-motile, non-sporulating and catalase- and oxidase-positive. Strain S2R53-5T grew in the presence of 0.5–15 % (w/v) NaCl and at pH 6.5–11.0, with optimum growth at 5 % (w/v) NaCl and pH 7.0. The temperature range for growth was 20.0–30.0 °C, with an optimum temperature of 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2R53-5T belongs to the family Staphylococcaceae and was most closely related to Salinicoccus roseus DSM 5351T (96.8 % gene sequence similarity), Salinicoccus hispanicus DSM 5352T (96.1 %), Salinicoccus alkaliphilus T8T (95.2 %) and Jeotgalicoccus halotolerans YKJ-101T (95.1 %). The genomic DNA G+C content was 47.0 mol%, which is in the range of 46–51 mol% that is characteristic for the genus Salinicoccus. Levels of DNA–DNA relatedness between strain S2R53-5T and S. roseus DSM 5351T, S. hispanicus DSM 5352T and S. alkaliphilus KCTC 13928T were 32.2, 15.4 and 4.6 %, respectively. Chemotaxonomic data (major menaquinone, MK-6; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0; cell-wall murein type, Lys and Gly) and 16S rRNA gene sequence analysis supported the affiliation of strain S2R53-5T with the genus Salinicoccus. The combined evidence from the low DNA–DNA relatedness, physiological, biochemical and other genotypic data indicate that strain S2R53-5T clearly represents a novel species of the genus Salinicoccus, for which the name Salinicoccus jeotgali sp. nov. is proposed. The type strain is S2R53-5T (=KCTC 13030T=LMG 23640T).


Sign in / Sign up

Export Citation Format

Share Document