scholarly journals Natronorubrum sulfidifaciens sp. nov., an extremely haloalkaliphilic archaeon isolated from Aiding salt lake in Xin-Jiang, China

2007 ◽  
Vol 57 (4) ◽  
pp. 738-740 ◽  
Author(s):  
Heng-Lin Cui ◽  
Dilbr Tohty ◽  
Hong-Can Liu ◽  
Shuang-Jiang Liu ◽  
Aharon Oren ◽  
...  

An extremely haloalkaliphilic archaeon, strain AD2T, was isolated from Aiding salt lake in Xin-Jiang, China. Strain AD2T required at least 12 % NaCl for growth. MgCl2 was not required. The isolate was able to grow over a pH range of 8.0–10.0 and temperature range of 20–55 °C, with optimal growth at pH 8.7–9.2 and 44–47 °C. The major polar lipids of strain AD2T were phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester; glycolipids were not detected. Analysis of its 16S rRNA gene sequence indicated that strain AD2T was phylogenetically related to members of the genus Natronorubrum, with sequence similarities to the type strains of Natronorubrum bangense, Natronorubrum tibetense and Natronorubrum aibiense of 97.1, 95.9 and 96.1 %, respectively. The G+C content of its DNA was 60.9 mol% (T m). Levels of DNA–DNA relatedness between strain AD2T and the type strains of Nrr. bangense, Nrr. tibetense and Nrr. aibiense were 49, 38 and 41 %, respectively. It was concluded that strain AD2T represents a novel species of the genus Natronorubrum, for which the name Natronorubrum sulfidifaciens sp. nov. is proposed. The type strain is AD2T (=CGMCC 1.6307T=JCM 14089T).

2007 ◽  
Vol 57 (11) ◽  
pp. 2538-2542 ◽  
Author(s):  
A. M. Castillo ◽  
M. C. Gutiérrez ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

A novel halophilic archaeon, strain EJ-32T, was isolated from water from Lake Ejinor in Inner Mongolia, China. The taxonomy of strain EJ-32T was studied by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities, strain EJ-32T was shown to be phylogenetically related to Halorubrum coriense (97.9 %), Halorubrum trapanicum (97.9 %), Halorubrum sodomense (97.8 %), Halorubrum tebenquichense (97.8 %), Halorubrum xinjiangense (97.6 %), Halorubrum terrestre (97.4 %), Halorubrum distributum (97.1 %) and Halorubrum saccharovorum (96.4 %). Strain EJ-32T was found to be neutrophilic, non-motile and Gram-negative. It grew in medium containing saturation concentrations of NaCl and did not require magnesium for optimal growth. The G+C content of the DNA is 64.0 mol%. Values for DNA–DNA hybridization with respect to phylogenetically related Halorubrum species were ≤49 %, indicating that EJ-32T constitutes a different genospecies. The data show that strain EJ-32T represents a novel species of the genus Halorubrum, for which the name Halorubrum ejinorense sp. nov. is proposed. The type strain is EJ-32T (=CECT 7194T=CGMCC 1.6782T=JCM 14265T).


2012 ◽  
Vol 62 (2) ◽  
pp. 330-334 ◽  
Author(s):  
Sylvie Cousin ◽  
Marie-Laure Gulat-Okalla ◽  
Laurence Motreff ◽  
Catherine Gouyette ◽  
Christiane Bouchier ◽  
...  

In the early 1980s, a facultatively anaerobic, non-motile, short rod, designated 202T, was isolated from a chicken crop and identified as a homofermentative lactic acid bacterium. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain was affiliated with the genus Lactobacillus, clustering within the Lactobacillus acidophilus–delbrueckii group. In this analysis, strain 202T appeared to be most closely related to the type strains of Lactobacillus intestinalis and Lactobacillus amylolyticus, with gene sequence similarities of 96.1 and 96.2 %, respectively. Strain 202T was found to differ from these two species, however, when investigated by multilocus sequence analysis, and it also differed in terms of some of its metabolic properties. On the basis of these observations, strain 202T is considered to represent a novel species in the genus Lactobacillus, for which the name Lactobacillus gigeriorum sp. nov. is proposed; the type strain is 202T ( = CRBIP 24.85T = DSM 23908T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1323-1326 ◽  
Author(s):  
Hidenori Hayashi ◽  
Kensaku Shibata ◽  
Mohammad Abdul Bakir ◽  
Mitsuo Sakamoto ◽  
Shinichi Tomita ◽  
...  

Three Gram-negative, anaerobic, rod-shaped bacteria (strains CB40, CB41 and CB42T) were isolated from human faeces. Based on phylogenetic analysis and specific phenotypic characteristics, these strains were included in the genus Bacteroides, and 16S rRNA gene sequence analysis indicated that these strains represented a novel species. The strains were most closely related to the type strains of Bacteroides barnesiae and Bacteroides salanitronis, with sequence similarities of 93.4 and 89.8 %, respectively. The G+C content of strain CB42T is 44.7 mol%. Major fatty acids were anteiso-C15 : 0, C16 : 0, iso-C17 : 0 3-OH and C18 : 1 ω9c. On the basis of the data presented, a novel Bacteroides species, Bacteroides coprophilus sp. nov., is proposed, with CB42T (=JCM 13818T=DSM 18228T) as the type strain.


2010 ◽  
Vol 60 (11) ◽  
pp. 2592-2595 ◽  
Author(s):  
De-Chao Zhang ◽  
Franz Schinner ◽  
Rosa Margesin

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated BZ42T, was isolated from the soil of an industrial site. Strain BZ42T was able to grow at 5–25 °C. The major fatty acids were iso-C15 : 0 (46.2 %), C16 : 1 ω7c and/or iso-C15 : 0 2-OH (23.2 %) and iso-C17 : 0 3-OH (9.1 %). The predominant menaquinone was MK-7. The genomic DNA G+C content was 36.5 mol% (HPLC). 16S rRNA gene sequence phylogenetic analysis revealed that strain BZ42T was a member of the genus Pedobacter, family Sphingobacteriaceae, and 16S rRNA gene sequence similarities between strain BZ42T and the type strains of species of the genus Pedobacter with validly published names were 90.4–93.2 %. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain BZ42T was considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter bauzanensis sp. nov. is proposed. The type strain is BZ42T (=DSM 22554T =CGMCC 1.10187T =CIP 110134T).


2010 ◽  
Vol 60 (4) ◽  
pp. 914-918 ◽  
Author(s):  
Eun-Jin Park ◽  
Min-Soo Kim ◽  
Seong Woon Roh ◽  
Mi-Ja Jung ◽  
Jin-Woo Bae

A novel actinobacterium, strain P30T, was isolated from jeotgal, a traditional Korean fermented seafood. Cells were aerobic, Gram-positive, non-motile and coccoid. Optimal growth occurred at 30–37 °C, at pH 8–9 and in the presence of 0–2 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis, strain P30T was phylogenetically closely related to Kocuria carniphila, Kocuria gwangalliensis, Kocuria rhizophila, Kocuria marina, Kocuria rosea and K. varians with levels of similarity of 98.6, 98.2, 98.1, 97.4, 97.3 and 97.3 %, respectively, to the type strains of these species. Levels of DNA–DNA relatedness between strain P30T and the type strains of K. carniphila, K. rhizophila, K. marina, K. rosea and K. varians were 37, 43, 37, 25 and 17 %, respectively. The predominant menaquinone of strain P30T was MK-7. Major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. The genomic DNA G+C content of strain P30T was 70.2 mol%. Based on these data, strain P30T is considered to represent a novel species of the genus Kocuria, for which the name Kocuria atrinae sp. nov. is proposed. The type strain is P30T (=KCTC 19594T=JCM 15914T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2153-2156 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Youn-Kyung Baek ◽  
Seon-Young Lee ◽  
...  

A novel bacterium, designated strain H3-R18T, was isolated from seashore sand collected from Homi cape, Pohang city, Korea. Cells were Gram-negative, aerobic, non-motile, cream-coloured, mesophilic and slightly halotolerant. 16S rRNA gene sequence analysis indicated that the organism was a member of the genus Pseudomonas, but the sequence showed ⩽96.3 % sequence similarity to that of the type strains of all recognized Pseudomonas species. Highest sequence similarities were to Pseudomonas brenneri CFML 97-391T (96.3 %) and Pseudomonas migulae CIP 105470T (96.3 %). The major fatty acids were summed feature 3 and C16 : 0, with lesser amounts of C12 : 0, C12 : 0 3-OH, C18 : 1ω7c and C14 : 0. The major isoprenoid quinone was Q-9. The DNA G+C content was 64.0 mol%. The phylogenetic, phenotypic and genetic properties of strain H3-R18T suggest that it represents a novel species, for which the name Pseudomonas pohangensis sp. nov. is proposed. The type strain is H3-R18T (=KACC 11517T=DSM 17875T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1149-1152 ◽  
Author(s):  
Shuhei Nagaoka ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-negative, pleomorphic, aerobic, haloalkaliphilic archaeon, strain 167-74T, was isolated from commercial rock salt imported into Japan from China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 167-74T is closely related to Halostagnicola larsenii XH-48T (98.3 %) and Halostagnicola kamekurae 194-10T (97.2 %). The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. A glycolipid was not detected, in contrast to the two existing, neutrophilic species of the genus Halostagnicola. The DNA G+C content of strain 167-74T was 60.7 mol%. and it gave DNA–DNA reassociation values of 19.5 and 18.8 %, respectively, with Hst. larsenii JCM 13463T and Hst. kamekurae 194-10T. Therefore, strain 167-74T represents a novel species, for which the name Halostagnicola alkaliphila sp. nov. is proposed, with the type strain 167-74T ( = JCM 16592T  = CECT 7631T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1645-1649 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Sylvie Cousin ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two yellow-pigmented, Gram-negative, rod-shaped bacterial strains, GH1-10T and GH29-5T, were isolated from greenhouse soils in Korea. 16S rRNA gene sequence analysis indicated that these strains were related to members of the genus Flavobacterium. Strain GH1-10T was most closely related to Flavobacterium psychrolimnae and Flavobacterium denitrificans, with sequence similarities of 95.9 and 95.2 %, respectively. Strain GH29-5T was most closely related to ‘Flavobacterium saliodium’, F. denitrificans and Flavobacterium frigoris, with sequence similarities of 94.3, 92.5 and 92.5 %, respectively. The major cellular fatty acids of GH1-10T were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH, and those of GH29-5T were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 3-OH. Both strains contained menaquinone with six isoprene units (MK-6) as the sole quinone. The DNA G+C contents of GH1-10T and GH29-5T were 35 and 39 mol%, respectively. Based on the phylogenetic and phenotypic data presented, it is concluded that the two bacteria represent two separate novel species of the genus Flavobacterium. The names proposed to accommodate these organisms are Flavobacterium daejeonense sp. nov., with type strain GH1-10T (=KACC 11422T=DSM 17708T), and Flavobacterium suncheonense sp. nov., with type strain GH29-5T (=KACC 11423T=DSM 17707T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1296-1302 ◽  
Author(s):  
Fumiko Nagai ◽  
Masami Morotomi ◽  
Yohei Watanabe ◽  
Hiroshi Sakon ◽  
Ryuichiro Tanaka

Two anaerobic, non-spore-forming, non-motile, Gram-negative-staining bacteria, strains YIT 12060T and YIT 12061T, were isolated from human faeces. Cells of strain YIT 12060T were coccoid to rod-shaped with round ends, positive for catalase, negative for indole and oxidase production, produced succinic and acetic acids as end products of glucose metabolism in peptone/yeast extract/glucose medium and had a DNA G+C content of 55.2 mol%. The main respiratory quinones were MK-10 (40 %) and MK-11 (57 %). Fatty acid analysis demonstrated the presence of a high concentration of iso-C15 : 0 (56 %). Following 16S rRNA gene sequence analysis, this strain was found to be most closely related to species of the genus Alistipes, with 90.9–92.6 % gene sequence similarities to type strains of this species. Phylogenetic analysis and biochemical data supported the affiliation of strain YIT 12060T to the genus Alistipes of the family ‘Rikenellaceae’. Strain YIT 12060T therefore represents a novel species of the genus Alistipes for which the name Alistipes indistinctus sp. nov. is proposed; the type strain is YIT 12060T (=DSM 22520T=JCM 16068T). Cells of the other isolate, strain YIT 12061T, were pleomorphic rods that were asaccharolytic, catalase- and oxidase-negative, positive for gelatin hydrolysis and indole production, produced small amounts of succinic, acetic and iso-valeric acids as end products of metabolism in peptone/yeast extract medium and had a DNA G+C content of approximately 42.4 mol%. On the basis of 16S rRNA gene sequence similarity values, this strain was shown to belong to the family ‘Porphyromonadaceae’ and related to the type strains of Odoribacter splanchnicus (89.6 %) and Odoribacter denticanis (86.2 %); similarity values with strains of recognized species within the family ‘Porphyromonadaceae’ were less than 84 %. Biochemical data supported the affiliation of strain YIT 12061T to the genus Odoribacter. Strain YIT 12061T therefore represents a novel species for which the name Odoribacter laneus sp. nov. is proposed; the type strain is YIT 12061T (=DSM 22474T=JCM 16069T).


2007 ◽  
Vol 57 (2) ◽  
pp. 347-352 ◽  
Author(s):  
Masataka Satomi ◽  
Birte Fonnesbech Vogel ◽  
Kasthuri Venkateswaran ◽  
Lone Gram

Two novel species belonging to the genus Shewanella are described on the basis of a polyphasic taxonomic approach. A total of 40 strains of Gram-negative, psychrotolerant, H2S-producing bacteria were isolated from marine fish (cod and plaice) caught in the Baltic Sea off Denmark. Strains belonging to group 1 (seven strains) were a lactate-assimilating variant of Shewanella morhuae with a G+C content of 44 mol%. The strains of group 2 (33 strains) utilized lactate, N-acetylglucosamine and malate but did not produce DNase or ornithine decarboxylase. Their G+C content was 47 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus Shewanella. Group 1 showed greatest sequence similarity with S. morhuae ATCC BAA-1205T (99.9 %). However, gyrB gene sequence analysis and DNA–DNA hybridization differentiated these isolates from S. morhuae, with 95.6 % sequence similarity and less than 57 % DNA relatedness, respectively. Group 2 strains shared more than 99 % 16S rRNA gene sequence similarity with the type strains of Shewanella colwelliana and Shewanella affinis, but gyrB sequence similarity (~85 %) and the results of DNA hybridization (~28 %) indicated that the new isolates represented a novel species. Furthermore, when compared to each other, the type strains of S. colwelliana and S. affinis had almost identical gyrB sequences and significantly high DNA reassociation values (76–83 %), indicating that they belonged to the same species. Based on the conclusions of this study, we propose the novel species Shewanella glacialipiscicola sp. nov. (type strain T147T=LMG 23744T=NBRC 102030T) for group 1 strains and Shewanella algidipiscicola sp. nov. (type strain S13T=LMG 23746T=NBRC 102032T) for group 2 strains, and we propose that Shewanella affinis as a later heterotypic synonym of Shewanella colwelliana.


Sign in / Sign up

Export Citation Format

Share Document