scholarly journals Halomonas avicenniae sp. nov., isolated from the salty leaves of the black mangrove Avicennia germinans in Puerto Rico

2007 ◽  
Vol 57 (5) ◽  
pp. 900-905 ◽  
Author(s):  
Nelís Soto-Ramírez ◽  
Cristina Sánchez-Porro ◽  
Soniris Rosas ◽  
Wildaomaris González ◽  
Marian Quiñones ◽  
...  

A Gram-negative, short rod to oval-shaped bacterium (strain MW2aT) was isolated from the surface of leaves of the black mangrove Avicennia germinans and subjected to a polyphasic taxonomic study. Strain MW2aT was moderately halophilic, growing at NaCl concentrations in the range 0–25 % (w/v) with optimum growth at 5 % (w/v) NaCl. Growth occurred at 12–40 °C (optimum, 30–35 °C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Strain MW2aT was strictly aerobic. Phylogenetic analysis based on the 16S rRNA gene showed that the strain belongs to the genus Halomonas. The closest relative was Halomonas marisflavi, with 98.6 % 16S rRNA gene sequence similarity. The DNA G+C content of strain MW2aT was 61.5 mol%, which is in the range of values for Halomonas species. DNA–DNA hybridization with H. marisflavi showed a relatedness of 42 % and lower values were obtained with respect to other related Halomonas species. The major fatty acids were C16 : 0, C19 : 0 cyclo ω8c, C18 : 1 ω7c and C12 : 0 3-OH. Overall, the phenotypic, genotypic and phylogenetic results presented in this study demonstrate that strain MW2aT represents a novel species within the genus Halomonas. The name Halomonas avicenniae sp. nov. is proposed, with strain MW2aT (=CECT 7193T=CCM 7396T) as the type strain.

2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4809-4815 ◽  
Author(s):  
Xiang Wang ◽  
Hong-Xing Yang ◽  
Ying-Kun Zhang ◽  
Shi-Jun Zhu ◽  
Xiao-Wei Liu ◽  
...  

A yellow-pigmented bacterial strain, designated Y2T, was isolated from farmland soil in Bengbu, Anhui province, China. Cells of strain Y2T were Gram-stain-negative, strictly aerobic, non-motile and rod-shaped. Strain Y2T grew optimally at pH 7.0, 30 °C and in the presence of 2 % (w/v) NaCl. The DNA G+C content was 68.9 mol%. The major fatty acids (>5 %) were iso-C15 : 0, iso-C17 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c), iso-C11 : 0 3-OH and iso-C11 : 0. The major respiratory quinone was ubiquinone-8 (Q-8), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain Y2T was most closely related to Luteimonas mephitis B1953/27.1T (99.1 % 16S rRNA gene sequence similarity), followed by Luteimonas lutimaris G3T (98.6 %), Luteimonas abyssi XH031T (96.2 %) and Luteimonas aquatica RIB1-20T (96.0 %). Strain Y2T exhibited low DNA–DNA relatedness with Luteimonas mephitis B1953/27.1T (43.6 ± 0.5 %) and Luteimonas lutimaris G3T (43.9 ± 2.1 %). On the basis of phenotypic, genotypic and phylogenetic evidence, strain Y2T represents a novel species of the genus Luteimonas, for which the name Luteimonas soli sp. nov. is proposed. The type strain is Y2T ( = ACCC 19799T = KCTC 42441T).


2006 ◽  
Vol 56 (2) ◽  
pp. 373-377 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Sang-Mi Lee ◽  
Jae-Chan Lee ◽  
Li-Hua Xu ◽  
...  

A moderately halophilic bacterium, strain BH169T, capable of growing at salinities of 3–20 % (w/v) NaCl was isolated from a saline lake in China. Strain BH169T was strictly aerobic, short-rod-shaped and non-motile (non-flagellated). Its major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. The genomic DNA G+C content was about 43 mol% and the predominant quinone was MK-7. The cell-wall peptidoglycan was of the A1γ type, containing meso-diaminopimelic acid as the diagnostic diamino acid. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct phylogenetic line within the spore-forming rods of the genus Bacillus. The levels of 16S rRNA gene sequence similarity to the type strains of Bacillus species were below 93 %. On the basis of phenotypic and molecular properties, strain BH169T (=KCTC 3912T=DSM 16461T) represents the type strain of a novel species within the genus Bacillus, for which the name Bacillus salarius sp. nov. is proposed.


2004 ◽  
Vol 54 (6) ◽  
pp. 2185-2190 ◽  
Author(s):  
Hiroyuki Ohta ◽  
Reiko Hattori ◽  
Yuuji Ushiba ◽  
Hisayuki Mitsui ◽  
Masao Ito ◽  
...  

The taxonomic position of a halo- and organo-sensitive, oligotrophic soil bacterium, strain S213T, was investigated. Cells were Gram-negative, non-motile, strictly aerobic, yellow-pigmented rods of short to medium length on diluted nutrient broth. When 0·1–0·4 % (w/v) NaCl was added to diluted media composed of peptone and meat extract, growth was inhibited with increasing NaCl concentration and the cells became long aberrant forms. When 6 mM CaCl2 was added, the cells grew quite normally and aberrant cells were no longer found at 0·1–0·5 % (w/v) NaCl. Chemotaxonomically, strain S213T contains chemical markers that indicate its assignment to the Sphingomonadaceae: the presence of ubiquinone Q-10 as the predominant respiratory quinone, C18 : 1 and C16 : 0 as major fatty acids, C14 : 0 2-OH as the major 2-hydroxy fatty acid and sphingoglycolipids. 16S rRNA gene sequence analysis indicated that strain S213T belongs to the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas mali IFO 15500T (98·3 %), Sphingomonas pruni IFO 15498T (98·0 %), Sphingomonas asaccharolytica IFO 15499T (97·9 %) and Sphingomonas echinoides DSM 1805T (97·8 %). The results of DNA–DNA hybridization experiments and its phenotypic characteristics clearly distinguished the strain from its nearest neighbours and demonstrate that strain S213T represents a novel Sphingomonas species, for which the name Sphingomonas oligophenolica sp. nov. is proposed. The type strain is S213T (=JCM 12082T=CIP 107926T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1442-1447 ◽  
Author(s):  
Hideyuki Tamaki ◽  
Yasuhiro Tanaka ◽  
Hiroaki Matsuzawa ◽  
Mizuho Muramatsu ◽  
Xian-Ying Meng ◽  
...  

A novel aerobic, chemoheterotrophic bacterium, strain YO-36T, isolated from the rhizoplane of an aquatic plant (a reed, Phragmites australis) inhabiting a freshwater lake in Japan, was morphologically, physiologically and phylogenetically characterized. Strain YO-36T was Gram-negative and ovoid to rod-shaped, and formed pinkish hard colonies on agar plates. Strain YO-36T grew at 20–40 °C with optimum growth at 30–35 °C, whilst no growth was observed at 15 °C or 45 °C. The pH range for growth was 5.5–8.5 with an optimum at pH 6.5. Strain YO-36T utilized a limited range of substrates, such as sucrose, gentiobiose, pectin, gellan gum and xanthan gum. The strain contained C16 : 0, C16 : 1, C14 : 0 and C15 : 0 as the major cellular fatty acids and menaquinone-12 as the respiratory quinone. The G+C content of the genomic DNA was 62.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YO-36T belonged to the candidate phylum OP10 comprised solely of environmental 16S rRNA gene clone sequences except for two strains, P488 and T49 isolated from geothermal soil in New Zealand; strain YO-36T showed less than 80 % sequence similarity to strains P488 and T47. Based on the phylogetic and phenotypic findings, a new genus and species, Armatimonas rosea gen. nov., sp. nov., is proposed for the isolate (type strain YO-36T  = NBRC 105658T  = DSM 23562T). In addition, a new bacterial phylum named Armatimonadetes phyl. nov. is proposed for the candidate phylum OP10 represented by A. rosea gen. nov., sp. nov. and Armatimonadaceae fam. nov., Armatimonadales ord. nov., and Armatimonadia classis nov.


Author(s):  
Priya Lakra ◽  
Helianthous Verma ◽  
Chandni Talwar ◽  
Durgesh Narain Singh ◽  
Nirjara Singhvi ◽  
...  

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensi s DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA–DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans .


Sign in / Sign up

Export Citation Format

Share Document