scholarly journals Desulfobulbus japonicus sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan

2007 ◽  
Vol 57 (4) ◽  
pp. 849-855 ◽  
Author(s):  
Daisuke Suzuki ◽  
Atsuko Ueki ◽  
Aya Amaishi ◽  
Katsuji Ueki

Two strictly anaerobic, mesophilic, sulfate-reducing bacterial strains, Pro1T and Pro16, were isolated from an estuarine sediment in the Sea of Japan of the Japanese islands and were characterized by phenotypic and phylogenetic methods. Strains Pro1T and Pro16 had almost the same physiological and chemotaxonomic characteristics. Cells of both strains were Gram-negative, motile, non-spore-forming rods. Catalase activity was not detected. The optimum NaCl concentration for growth was 3.0 % (w/v). The optimum temperature for growth was 35 °C and the optimum pH was 6.7. Both strains used formate, propionate, pyruvate, lactate, fumarate, malate, ethanol, propanol, butanol, glycerol, alanine, glucose, fructose and H2 as electron donors for sulfate reduction and did not use acetate, butyrate, succinate, methanol, glycine, serine, aspartate, glutamate, cellobiose or sucrose. Organic electron donors were incompletely oxidized mainly to acetate. Both strains also used thiosulfate as an electron acceptor. Without electron acceptors, both strains fermented pyruvate and lactate. The genomic DNA G+C contents of strains Pro1T and Pro16 were 48.6 and 46.0 mol%, respectively. The major respiratory quinone of both strains was menaquinone MK-5(H2). Major cellular fatty acids of both strains were C15 : 0, C16 : 0, C17 : 1 ω6 and C18 : 1 ω7. Phylogenetic analysis based on 16S rRNA gene sequences placed both strains in the class Deltaproteobacteria. The closest recognized relative of strains Pro1T and Pro16 was Desulfobulbus mediterraneus with sequence similarities of 95.2 and 94.8 %, respectively. Based on phylogenetic, physiological and chemotaxonomic characteristics, strains Pro1T and Pro16 represent a novel species of the genus Desulfobulbus, for which the name Desulfobulbus japonicus is proposed. The type strain is Pro1T(=JCM 14043T=DSM 18378T) and strain Pro16 (=JCM 14044=DSM 18379) is a reference strain.

2007 ◽  
Vol 57 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Daisuke Suzuki ◽  
Atsuko Ueki ◽  
Aya Amaishi ◽  
Katsuji Ueki

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (MSL86T) isolated from an estuarine sediment in the Sea of Japan (around the Japanese islands) was characterized phenotypically and phylogenetically. The cells were found to be Gram-negative, motile, non-spore-forming rods. Catalase was not detected. The optimum NaCl concentration for growth was 1.0 % (w/v) and the optimum temperature was 35 °C. Strain MSL86T was slightly alkaliphilic, with optimum growth at pH 7.5–7.6. Organic electron donors were incompletely oxidized to (mainly) acetate. Strain MSL86T utilized formate, pyruvate, lactate, fumarate, ethanol, propanol, butanol and glycerol as electron donors for sulfate reduction and did not use acetate, propionate, butyrate, succinate, malate, methanol, glycine, alanine, serine, aspartate, glutamate or H2. Sulfite, thiosulfate and fumarate were used as electron acceptors with lactate as an electron donor. Without electron acceptors, the strain fermented pyruvate and fumarate. The genomic DNA G+C content was 54.4 mol%. Menaquinone MK-8(H4) was the major respiratory quinone. The major cellular fatty acids were C16 : 0, C16 : 1 ω7, C16 : 1 ω5 and C17 : 1 ω6. A phylogenetic analysis based on the 16S rRNA gene sequence placed the strain in the class Deltaproteobacteria. The recognized bacterium most closely related to strain MSL86T was [Desulfobacterium] catecholicum DSM 3882T (sequence similarity 94.4 %), and the next most closely related recognized species were Desulfotalea psychrophila (94.2 % sequence similarity with the type strain) and Desulfotalea arctica (93.7 %). As the physiological and chemotaxonomic characteristics of MSL86T were distinctly different from those of any related species, a novel genus and species Desulfopila aestuarii gen. nov., sp. nov. are proposed to accommodate the strain. The type strain of Desulfopila aestuarii is MSL86T (=JCM 14042T=DSM 18488T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3081-3086 ◽  
Author(s):  
Daisuke Suzuki ◽  
Zhiling Li ◽  
Xinxin Cui ◽  
Chunfung Zhang ◽  
Arata Katayama

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (DST), isolated from river sediment contaminated with volatile organic compounds, was characterized phenotypically and phylogenetically. Cells were Gram-reaction-negative, non-motile short rods. For growth, optimum NaCl concentration was 0.9 g l−1, optimum temperature was 30 °C and optimum pH was 7.2. Strain DST utilized phenol, benzoate, 4-hydroxybenzoate, 4-methylphenol, 4-chlorophenol, acetate, butyrate and pyruvate as electron donors for sulfate reduction. Electron donors were completely oxidized. Strain DST did not utilize sulfite, thiosulfate or nitrate as electron acceptors. The genomic DNA G+C content of strain DST was 58.9 mol%. Major cellular fatty acids were iso-C14 : 0, anteiso-C15 : 0 and C18 : 1ω7c. Phylogenetic analyses based on the 16S rRNA gene indicated its closest relatives were strains of Desulfobacterium anilini (about 98–99 % sequence similarity) but the DNA–DNA hybridization value with Desulfobacterium anilini Ani1T was around 40 %. Although strain DST and its relatives shared most phenotypic and chemotaxonomic characteristics, the utilization of 4-chlorophenol, the range of electron acceptors and the optimum growth conditions differed. Strain DST is closely related to strains of Desulfobacterium anilini , but constitutes a different species within the genus. Based on phylogeny, phenotypic characteristics and chemotaxonomic characteristics, strain DST and Desulfobacterium anilini were clearly different from strains of other species of the genus Desulfobacterium . We thus propose the reclassification of Desulfobacterium anilini within a new genus, Desulfatiglans gen. nov., as Desulfatiglans anilini comb. nov. We also propose Desulfatiglans parachlorophenolica sp. nov. to accommodate strain DST. The type strain is DST ( = JCM 19179T = DSM 27197T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2167-2170 ◽  
Author(s):  
O. Ben Dhia Thabet ◽  
M.-L. Fardeau ◽  
C. Suarez-Nuñez ◽  
M. Hamdi ◽  
P. Thomas ◽  
...  

Two novel sulfate-reducing bacterial strains, designated E-2T and IMP-2, were isolated from geographically distinct locations. Strain E-2T was recovered from marine sediments near Sfax (Tunisia), whereas strain IMP-2 originated from oilfield production fluids in the Gulf of Mexico. Cells were Gram-negative, non-sporulated, motile, vibrio-shaped or sigmoid. They were strictly anaerobic, mesophilic and moderately halophilic. Sulfate, sulfite, thiosulfate and elemental sulfur served as electron acceptors, but not nitrate or nitrite. H2 (with acetate as carbon source), formate, fumarate, lactate, malate, pyruvate, succinate and fructose were used as electron donors in the presence of sulfate as terminal electron acceptor. Lactate was oxidized incompletely to acetate. Fumarate and pyruvate were fermented. Desulfoviridin and c-type cytochromes were present. 16S rRNA gene sequence analysis of the two strains showed that they were phylogenetically similar (99.0 % similarity) and belonged to the genus Desulfovibrio, with Desulfovibrio indonesiensis and Desulfovibrio gabonensis as their closest phylogenetic relatives. The G+C content of the DNA was respectively 60.4 and 62.7 mol% for strains E-2T and IMP-2. DNA–DNA hybridization experiments revealed that the novel strains had a high genomic relatedness, suggesting that they belong to the same species. We therefore propose that the two isolates be affiliated to a novel species of the genus Desulfovibrio, Desulfovibrio marinus sp. nov. The type strain is strain E-2T (=DSM 18311T =JCM 14040T).


2010 ◽  
Vol 60 (3) ◽  
pp. 603-609 ◽  
Author(s):  
Lyudmila A. Romanenko ◽  
Naoto Tanaka ◽  
Galina M. Frolova

Two bacterial strains, KMM 3891T and KMM 3892, were isolated from internal tissues of the marine mollusc Umbonium costatum collected from the Sea of Japan. The novel isolates were Gram-negative, aerobic, faint pink–reddish-pigmented, rod-shaped, non-motile, stenohaline and psychrotolerant bacteria that were unable to degrade most tested complex polysaccharides. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Fatty acid analysis revealed C17 : 1 ω6c, C17 : 0, C16 : 0 and C16 : 1 ω7c as the dominant components. The major isoprenoid quinone was Q-7. The DNA G+C content of strain KMM 3891T was 51.7 mol%. According to phylogenetic analysis of 16S rRNA gene sequences, strains KMM 3891T and KMM 3892 were positioned within the Gammaproteobacteria as a separate branch, sharing <93 % sequence similarity to their phylogenetic relatives including Saccharophagus degradans, Microbulbifer species, Endozoicomonas elysicola, Simiduia agarivorans and Teredinibacter turnerae. Based on phenotypic characterization and phylogenetic distance, the novel marine isolates KMM 3891T and KMM 3892 represent a new genus and species, for which the name Umboniibacter marinipuniceus gen. nov., sp. nov. is proposed. The type strain of Umboniibacter marinipuniceus is KMM 3891T (=NRIC 0753T =JCM 15738T).


Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Chokchai Kittiwongwattana

Two Gram-stain-negative, non-motile, rod-shaped bacterial strains were isolated from the surfaces of rice roots. They were designated as strains 1303T and 1310. Their colonies were circular, entire, opaque, convex and yellow. They were chitinase- and catalase-positive, reduced nitrate and grew at 16–37 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0) and 0–2.0% NaCl (optimum, 1.0 %). Based on the 16S rRNA gene sequence analysis, they were classified as members of the genus Chitinophaga . Results of phylogenetic and phylogenomic analyses indicated that they formed a cluster with Chitinophaga eiseniae YC6729T, Chitinophaga qingshengii JN246T, Chitinophaga varians 10-7 W-9003T and Chitinophaga fulva G-6-1-13T. When the genomic sequences of strains 1303T and 1310 were compared with their close relatives, the average nucleotide identity and digital DNA–DNA hybridization values were below the cut-off levels. Phosphatidylethanolamine was the major polar lipid. MK-7 was the major respiratory quinone. iso-C15 : 0, C16 : 1  ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c) were the predominant fatty acids. Differential characteristics between both strains and their close relatives were also observed. Based on the distinctions in genotypic, phenotypic and chemotypic features, strains 1303T and 1310 represent members of a novel species of the genus Chitinophaga , for which the name Chitinophaga oryzae sp. nov. is proposed. The type strain is 1303T (=KACC 22075T=TBRC 12926T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 442-448 ◽  
Author(s):  
Samson Viulu ◽  
Kohei Nakamura ◽  
Yurina Okada ◽  
Sakiko Saitou ◽  
Kazuhiro Takamizawa

A novel species of Fe(III)-reducing bacterium, designated strain OSK6T, belonging to the genus Geobacter , was isolated from lotus field mud in Japan. Strain OSK6T was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, Gram-negative, motile, straight rod-shaped bacterium, 0.6–1.9 µm long and 0.2–0.4 µm wide. The growth of the isolate occurred at 20–40 °C with optima of 30–37 °C and pH 6.5–7.5 in the presence of up to 0.5 g NaCl l−1. The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6T was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6T is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6T is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6T ( = DSM 24905T = JCM 17780T).


2020 ◽  
Vol 70 (9) ◽  
pp. 4851-4858 ◽  
Author(s):  
Tiphaine Le Roy ◽  
Patrick Van der Smissen ◽  
Adrien Paquot ◽  
Nathalie Delzenne ◽  
Giulio G. Muccioli ◽  
...  

A strictly anaerobic, Gram-stain-negative, non-spore-forming, non-motile, non-pigmented bacterium, strain J115T, was isolated from human faeces. Cells of strain J115T were straight rods, generally 1.8–3.0 µm, but could be up to 18 µm long. Growth occurred below 2 % (w/v) NaCl and 2 % (v/v) bile. Strain J115T produced acid from myo-inositol but not from d-glucose, d-ribose or d-xylose. Butyric acid was the major end-product from myo-inositol. The genomic DNA G+C content was 58.92 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the closest cultivated neighbours of strain J115T were Oscillibacter ruminantium GH1T (95.4 % similarity) and Oscillibacter valericigenes Sjm18-20T (94.1 %). Strain J115T was also related to the not-yet-cultured bacterium Oscillospira guilliermondii (92–93 % similarity). Coherently with the 16S rRNA gene sequence results, the ANI scores don't have units of strain J115T to O. ruminantium GH1T and O. valericigenes Sjm18-20T were 73.37 and 73.24, respectively, while in silico estimations of DNA–DNA hybridization were both 20.4 %, with confidence intervals of 18.2–22.9 % and 18.2–22.8 %, respectively. The major fatty acids were iso-C15 : 0 (24.2 %), C18 : 0 DMA (18.4 %), anteiso-C15 : 0 (15.2 %) and C16 : 0 DMA (7.6 %). No respiratory quinone was detected. Based on phenotypic features and phylogenetic position, it is proposed that this isolate represents a novel species in a new genus, Dysosmobacter welbionis gen. nov., sp. nov. The type strain of Dysosmobacter welbionis is J115T (DSM 106889T=LMG 30601T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2907-2914 ◽  
Author(s):  
Thuy T. An ◽  
Flynn W. Picardal

A novel, strictly anaerobic, sulfate-reducing bacterium, designated strain SCBMT, was isolated from water extracted from a coal bed in Indiana, USA. The isolate was characterized by a polyphasic taxonomic approach that included phenotypic and genotypic characterizations. Cells of strain SCBMT were vibrio-shaped, polarly flagellated, Gram-negative, motile, oxidase-negative and weakly catalase-positive. Growth of strain SCBMT was observed at NaCl concentrations ranging from 0 to 300 mM. However, no growth was observed when 1 M or more NaCl was present. Growth was observed at 16–37 °C, with optimal growth at 30 °C. The optimum pH for growth was 7, although growth was observed from pH 6.5 to 8. The doubling time under optimal growth conditions (30 °C, pH 7, 2.5 mM benzoate, 14 mM sulfate) was 2.7 days. Bicarbonate, HEPES, PIPES and MES were effective buffers for growth of strain SCBMT, but citrate inhibited growth. When sulfate was provided as the electron acceptor, strain SCBMT grew autotrophically with hydrogen as the electron donor and heterotrophically on benzoate, formate, acetate, pyruvate, butyrate, fumarate, succinate and palmitate. None of the substrates tested supported fermentative growth. Thiosulfate and sulfate were used as electron acceptors coupled to benzoate oxidation, but sulfite, elemental sulfur, DMSO, anthraquinone 2,6-disulfonate, nitrate, nitrite, ferric citrate, hydrous iron oxide and oxygen were not. The G+C content of genomic DNA was 62.5 mol%. The major cellular fatty acids were anteiso-C15 : 0 and C18 : 1ω7c. Phylogenetic analysis based on 16S rRNA gene sequencing placed strain SCBMT into a distinct lineage within the class Deltaproteobacteria . The closest, cultivated phylogenetic relative of strain SCBMT was Desulfarculus baarsii DSM 2075T, with only 91.7 % 16S rRNA gene sequence identity. On the basis of phenotypic and genotypic analyses, strain SCBMT represents a novel genus and species of sulfate-reducing bacteria, for which the name Desulfocarbo indianensis gen. nov., sp. nov. is proposed. The type strain of Desulfocarbo indianensis is SCBMT ( = DSM 28127T = JCM 19826T). Desulfocarbo is the second genus of the order Desulfarculales .


2011 ◽  
Vol 61 (9) ◽  
pp. 2298-2303 ◽  
Author(s):  
Yoshimichi Sugawara ◽  
Atsuko Ueki ◽  
Kunihiro Abe ◽  
Nobuo Kaku ◽  
Kazuya Watanabe ◽  
...  

Two facultatively anaerobic bacterial strains, designated WR061T and WR054, were isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. The two strains were phylogenetically positioned close to one another and had almost the same phenotypic properties. Cells were Gram-reaction-positive, non-motile, non-spore-forming, irregular rods. Cobalamin (vitamin B12) was required for growth. The strains utilized various carbohydrates, including hexoses and disaccharides, and produced acetate and propionate from these carbohydrates. Pentoses and polysaccharides were not utilized. They grew at 20–37 °C (optimum 35 °C) and pH 5.3–8.0 (optimum pH 6.8–7.5). Catalase and nitrate-reducing activities were detected. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0 and C15 : 0 DMA, the major respiratory quinone was menaquinone MK-9(H4) and the genomic DNA G+C content was 69.3–69.5 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. Phylogenetic analysis based on 16S rRNA gene sequences placed the strains in the phylum Actinobacteria. Both strains were remotely related to the species in the family Propionibacteriaceae and Propionibacterium propionicum JCM 5830T was the most closely related type strain with a sequence similarity of 91.6 %. Based on phylogenetic, physiological and chemotaxonomic analyses, the two novel strains together represent a novel species of a new genus, for which the name Propioniciclava tarda gen. nov., sp. nov. is proposed. The type strain is WR061T ( = JCM 15804T  = DSM 22130T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2267-2271 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Cátia Faria ◽  
M. Fernanda Nobre ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
...  

Two bacterial strains, PC-142 and PC-147T, isolated from poultry litter compost, were characterized with respect to their phenetic and phylogenetic characteristics. The isolates were endospore-forming rods that were reddish in colour after Gram staining. They were catalase- and oxidase-positive, were able to degrade starch and gelatin and grew at 15–40 °C and pH 5.5–10.0. The predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0, the major respiratory quinone was menaquinone MK-7, the cell-wall peptidoglycan was of the A1γ type and the G+C content of the DNA was 58 mol%. The 16S rRNA gene sequence analysis and phenetic characterization indicated that these organisms belong to the genus Paenibacillus, with Paenibacillus pasadenensis SAFN-007T as the closest phylogenetic neighbour (97.5 %). Strains PC-142, PC-147T and P. pasadenensis SAFN-007T represent a novel lineage within the genus Paenibacillus, characterized by a high DNA G+C content (58–63 mol%). The low levels of 16S rRNA gene sequence similarity with respect to other taxa with validly published names and the identification of distinctive phenetic features in the two isolates indicate that strains PC-142 and PC-147T represent a novel species of the genus Paenibacillus, for which the name Paenibacillus humicus sp. nov. is proposed. The type strain is PC-147T (=DSM 18784T =NBRC 102415T =LMG 23886T).


Sign in / Sign up

Export Citation Format

Share Document