scholarly journals Pseudidiomarina sediminum sp. nov., a marine bacterium isolated from coastal sediments of Luoyuan Bay in China

2007 ◽  
Vol 57 (11) ◽  
pp. 2572-2577 ◽  
Author(s):  
Zong-Yun Hu ◽  
Yun Li

A strain of heterotrophic, facultatively anaerobic, marine bacterium, designated strain c121T, was isolated from coastal sediment of Luoyuan Bay, in Fujian province, PR China. Analysis of the 16S rRNA gene sequence revealed an affiliation with the genus Pseudidiomarina; the sequence similarity between c121T and Pseudidiomarina taiwanensis PIT1T was 97 %. Cells of the novel strain were non-pigmented, Gram-negative rods, 0.3 μm wide and 1.2–1.8 μm long. Cells grown in broth cultures were non-motile, lacking flagella. Growth of the strain was observed at salinities ranging from 0.5 to 15 % NaCl, and the optimal concentration was about 1–8 %. The temperature range for growth was rather broad and was high for a marine bacterium: the strain grew at 13–42 °C, showed good growth at 20–40 °C and had an optimum between 30 and 40 °C. The major cellular fatty acids were iso-C15 : 0 (24.2 %), C16 : 1 ω7c/iso-C15 : 0 2-OH (15.3 %) and iso-C17 : 1 ω9c (11.9 %). The DNA G+C content was 50.0 mol%. Phylogeny based on 16S rRNA gene sequences, together with data from phenotypic and chemotaxonomic characterization, revealed that strain c121T could be classified within a novel species of the genus Pseudidiomarina, for which the name Pseudidiomarina sediminum sp. nov. is proposed, with the type strain c121T (=CICC 10319T =LMG 24046T).

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1902-1907 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel sulfate-reducing bacterium, designated strain Pf12BT, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0–4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0–7.5 and the optimum temperature was 42–45 °C. Strain Pf12BT used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C16 : 0 and C18 : 0. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order Desulfovibrionales in the class Deltaproteobacteria. The closest relative was Desulfomicrobium baculatum DSM 4028T with which it shared 91  % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family Desulfomicrobiaceae is proposed, Desulfoplanes formicivorans gen. nov., sp. nov. The type strain of Desulfoplanes formicivorans is Pf12BT ( = NBRC 110391T = DSM 28890T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1948-1951 ◽  
Author(s):  
Seung Bum Kim ◽  
Olga I. Nedashkovskaya

A novel strain, designated KMM 6019T, was isolated from coastal seawater and subjected to taxonomic examination using a polyphasic approach. A comparative analysis of 16S rRNA gene sequences revealed that strain KMM 6019T formed a distinct phyletic line within the genus Winogradskyella, a member of the family Flavobacteriaceae, phylum Bacteroidetes. The 16S rRNA gene sequence similarity between the novel isolate and the type strains of the recognized species of the genus Winogradskyella was 94.0–97.8 %. Winogradskyella thalassocola KMM 3907T was the closest relative, with 97.8 % sequence similarity. The predominant fatty acids of strain KMM 6019T were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C15 : 0 3-OH, iso-C16 : 0 3-OH, C15 : 0, iso-C17 : 0 3-OH and summed feature 3 comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c, which are characteristic for members of the genus Winogradskyella. The DNA G+C content was 35.3 mol%. Strain KMM 6019T moved by gliding and grew with 1–5 % NaCl and at 4–30 °C. The novel strain degraded gelatin, casein and starch and produced acid from cellobiose, d-glucose and maltose. Strain KMM 6019T could clearly be differentiated from the other Winogradskyella species by the ability to utilize inositol and sorbitol and to produce hydrogen sulphide. On the basis of phylogenetic and phenotypic findings, strain KMM 6019T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella pacifica sp. nov. is proposed. The type strain is KMM 6019T (=KCTC 22997T=LMG 22568T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1901-1905 ◽  
Author(s):  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hong-Yu Liu ◽  
Yue-Qin Zhang ◽  
Li-Hua Xu ◽  
...  

A moderately halophilic bacterium, strain YIM 70202T, was isolated from a desert soil sample collected from Egypt and was subjected to a taxonomic investigation. In a phylogenetic dendrogram based on 16S rRNA gene sequence analysis, strain YIM 70202T was affiliated to the Salinicoccus clade, showing 94.5–96.8 % 16S rRNA gene sequence similarity to the recognized species of the genus Salinicoccus, in which Salinicoccus roseus CCM 3516T was the nearest neighbour. The DNA–DNA relatedness value of the novel isolate with S. roseus CCM 3516T was 12.7 %. The novel isolate grew at temperatures between 4 and 45 °C and at pH values ranging from 7.0 to 11.0, with an optimum of 30 °C and pH 8.0–9.0, respectively. Strain YIM 70202T grew optimally in the presence of 10 % NaCl (w/v) and growth was observed at NaCl concentrations in the range 1–25 % (w/v). Chemotaxonomic data revealed that strain YIM 70202T contained MK-6 as the predominant respiratory quinone, possessed l-Lys–Gly5 as the cell-wall peptidoglycan, had phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid as the polar lipids and contained i-C15 : 0 and ai-C15 : 0 as the predominant fatty acids. The DNA G+C content was 49.7 mol%. The biochemical and chemotaxonomic properties demonstrate that strain YIM 70202T represents a novel species of the genus Salinicoccus. The name Salinicoccus luteus sp. nov. is proposed with strain YIM 70202T (=CGMCC 1.6511T=KCTC 3941T) as the type strain.


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


Author(s):  
Priya Lakra ◽  
Helianthous Verma ◽  
Chandni Talwar ◽  
Durgesh Narain Singh ◽  
Nirjara Singhvi ◽  
...  

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensi s DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA–DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans .


2012 ◽  
Vol 62 (2) ◽  
pp. 322-329 ◽  
Author(s):  
William J. Wolfgang ◽  
An Coorevits ◽  
Jocelyn A. Cole ◽  
Paul De Vos ◽  
Michelle C. Dickinson ◽  
...  

Twelve independent isolates of a Gram-positive, endospore-forming rod were recovered from clinical specimens in New York State, USA, and from raw milk in Flanders, Belgium. The 16S rRNA gene sequences for all isolates were identical. The closest species with a validly published name, based on 16S rRNA gene sequence, is Sporosarcina koreensis (97.13 % similarity). DNA–DNA hybridization studies demonstrate that the new isolates belong to a species distinct from their nearest phylogenetic neighbours. The partial sequences of the 23S rRNA gene for the novel strains and their nearest neighbours also provide support for the novel species designation. Maximum-likelihood phylogenetic analysis of the 16S rRNA gene sequences confirmed that the new isolates are in the genus Sporosarcina. The predominant menaquinone is MK-7, the peptidoglycan has the type A4α l-Lys–Gly–d-Glu, and the polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant fatty acids are iso-C14 : 0, iso-C15 : 0 and anteiso-C15 : 0. In addition, biochemical and morphological analyses support designation of the twelve isolates as representatives of a single new species within the genus Sporosarcina, for which the name Sporosarcina newyorkensis sp. nov. (type strain 6062T  = DSM 23544T  = CCUG 59649T  = LMG 26022T) is proposed.


2004 ◽  
Vol 70 (6) ◽  
pp. 3724-3732 ◽  
Author(s):  
Lars Fieseler ◽  
Matthias Horn ◽  
Michael Wagner ◽  
Ute Hentschel

ABSTRACT Marine sponges (Porifera) harbor large amounts of commensal microbial communities within the sponge mesohyl. We employed 16S rRNA gene library construction using specific PCR primers to provide insights into the phylogenetic identity of an abundant sponge-associated bacterium that is morphologically characterized by the presence of a membrane-bound nucleoid. In this study, we report the presence of a previously unrecognized evolutionary lineage branching deeply in the domain Bacteria that is moderately related to the Planctomycetes, Verrucomicrobia, and Chlamydia lines of decent. Because members of this lineage showed <75% 16S rRNA gene sequence similarity to known bacterial phyla, we suggest the status of a new candidate phylum, named “Poribacteria”, to acknowledge the affiliation of the new bacterium with sponges. The affiliation of the morphologically conspicuous sponge bacterium with the novel phylogenetic lineage was confirmed by fluorescence in situ hybridization with newly designed probes targeting different sites of the poribacterial 16S rRNA. Consistent with electron microscopic observations of cell compartmentalization, the fluorescence signals appeared in a ring-shaped manner. PCR screening with “Poribacteria”-specific primers gave positive results for several other sponge species, while samples taken from the environment (seawater, sediments, and a filter-feeding tunicate) were PCR negative. In addition to a report for Planctomycetes, this is the second report of cell compartmentalization, a feature that was considered exclusive to the eukaryotic domain, in prokaryotes.


2011 ◽  
Vol 61 (3) ◽  
pp. 631-636 ◽  
Author(s):  
Toshiyuki Moriya ◽  
Tomohisa Hikota ◽  
Isao Yumoto ◽  
Takashi Ito ◽  
Yusuke Terui ◽  
...  

Two novel thermophilic micro-organisms, designated YMO81T and YMO722T, were isolated from a high-temperature compost (internal temperature >95 °C). The isolates were able to grow at 80 °C in a nutrient broth and in a synthetic medium. Cells were aerobic, Gram-negative rods (0.3×4.0 μm). Spore formation was not observed. Strain YMO81T grew at 83 °C and pH 6.9–8.9 and grew optimally at 78 °C and pH 7.5 with 2 % NaCl. For growth in a synthetic minimal medium at 70 °C, the vitamins biotin, folic acid and thiamine and the amino acids glutamine and methionine were essential for growth of both strains; at 80 °C, strain YMO81T also required histidine, isoleucine, leucine, lysine, phenylalanine, serine, tryptophan and valine. Cellular fatty acids of the isolates comprised mainly iso-C17 : 0 and anteiso-C17 : 0. The DNA G+C contents of strains YMO81T and YMO722T were 70 and 64 mol%, respectively. When the 16S rRNA gene sequences of the isolates were compared with those of other bacteria, highest similarity was observed with Planifilum yunnanense LA5T (90 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain YMO722T and strain YMO81T was 55 %. N 4-Aminopropylspermine was identified as a major polyamine, which suggested that the isolates were distinct from other related taxa. On the basis of phylogenetic, phenotypic and chemotaxonomic analyses, we propose a new genus, Calditerricola gen. nov., and two novel species, the type species Calditerricola satsumensis sp. nov., with type strain YMO81T (=ATCC BAA-1462T =JCM 14719T =DSM 45223T), and Calditerricola yamamurae sp. nov., with type strain YMO722T (=ATCC BAA-1461T =JCM 14720T =DSM 45224T).


Sign in / Sign up

Export Citation Format

Share Document