Calditerricola satsumensis gen. nov., sp. nov. and Calditerricola yamamurae sp. nov., extreme thermophiles isolated from a high-temperature compost

2011 ◽  
Vol 61 (3) ◽  
pp. 631-636 ◽  
Author(s):  
Toshiyuki Moriya ◽  
Tomohisa Hikota ◽  
Isao Yumoto ◽  
Takashi Ito ◽  
Yusuke Terui ◽  
...  

Two novel thermophilic micro-organisms, designated YMO81T and YMO722T, were isolated from a high-temperature compost (internal temperature >95 °C). The isolates were able to grow at 80 °C in a nutrient broth and in a synthetic medium. Cells were aerobic, Gram-negative rods (0.3×4.0 μm). Spore formation was not observed. Strain YMO81T grew at 83 °C and pH 6.9–8.9 and grew optimally at 78 °C and pH 7.5 with 2 % NaCl. For growth in a synthetic minimal medium at 70 °C, the vitamins biotin, folic acid and thiamine and the amino acids glutamine and methionine were essential for growth of both strains; at 80 °C, strain YMO81T also required histidine, isoleucine, leucine, lysine, phenylalanine, serine, tryptophan and valine. Cellular fatty acids of the isolates comprised mainly iso-C17 : 0 and anteiso-C17 : 0. The DNA G+C contents of strains YMO81T and YMO722T were 70 and 64 mol%, respectively. When the 16S rRNA gene sequences of the isolates were compared with those of other bacteria, highest similarity was observed with Planifilum yunnanense LA5T (90 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain YMO722T and strain YMO81T was 55 %. N 4-Aminopropylspermine was identified as a major polyamine, which suggested that the isolates were distinct from other related taxa. On the basis of phylogenetic, phenotypic and chemotaxonomic analyses, we propose a new genus, Calditerricola gen. nov., and two novel species, the type species Calditerricola satsumensis sp. nov., with type strain YMO81T (=ATCC BAA-1462T =JCM 14719T =DSM 45223T), and Calditerricola yamamurae sp. nov., with type strain YMO722T (=ATCC BAA-1461T =JCM 14720T =DSM 45224T).

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2248-2254 ◽  
Author(s):  
Amit Kumar Singh ◽  
Nidhi Garg ◽  
Rup Lal

A halotolerant, Gram-negative, rod-shaped and light-red-pigmented bacterium, designated LP51T, was isolated from pond sediment near a hexachlorocyclohexane dumpsite located at Chinhat, Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LP51T formed a distinct phyletic clade along with the members of the genus Pontibacter. The 16S rRNA gene sequence similarity to members of the genus Pontibacter ranged from 94.2 to 99.4  %. The cells were motile, aerobic and catalase- and oxidase-positive. The major fatty acids were iso-C15  :  0 (17.8  %), iso-C15  :  0 3-OH (8.8  %), iso-C17  :  0 3-OH (5.7  %), summed feature 3 (C16  :  1ω7c and/or C16  :  1ω6c; 6.5  %) and summed feature 4 (iso-C17  :  1 I and/or anteiso-C17  :  1 B; 30.7  %). The polar lipid profile of strain LP51T showed the presence of phosphatidylethanolamine, an unidentified aminophospholipid, unknown aminolipids, unknown polar lipids and unknown glycolipids. DNA–DNA relatedness of strain LP51T with respect to the most closely related type strain, Pontibacter korlensis X14-1T, was 47.2  %. On the basis of this information, it is proposed that the isolate be assigned to a novel species of the genus Pontibacter, for which the name Pontibacter chinhatensis sp. nov. is proposed. The type strain is LP51T ( = CCM 8436T = MCC 2070T).


2020 ◽  
Vol 8 (10) ◽  
pp. 1475
Author(s):  
Guishan Zhang ◽  
Xiaoyan Dong ◽  
Yingjiao Sun ◽  
André Antunes ◽  
Tyas Hikmawan ◽  
...  

Two extremely halophilic archaeal strains, designated SB29T and SB3T, were isolated from the brine-seawater interface of Discovery Deep in the Red Sea. Cells of both strains were pleomorphic (irregular polyhedrals, ovals, and rods) and stained Gram-negative; colonies were pigmented pink. The sequence similarity of the 16S rRNA gene of strain SB29T with that of its most closely related validly described species (Hfx. sulfurifontis DSM 16227T) and that of strain SB3T with its closest validly described relative (Hfx. denitrificans ATCC 35960T) was 98.1% and 98.6%, respectively. The incomplete draft genomes of SB29T and SB3T are 3,871,125 bp and 3,904,985 bp in size, respectively, and their DNA G + C contents are 60.75% and 65.64%, respectively. The highest ANI values between the genomes of SB29T and SB3T and the most closely related genomes in GenBank were determined as 82.6% (Hfx. sulfurifontis ATCC BAA-897T, GenBank accession no. GCA_000337835.1) and 92.6% (Haloferax denitrificans ATCC 35960T, GenBank accession no. GCA_000337795.1), respectively. These data indicate that the two new isolates cannot be classified into any recognized species of the genus Haloferax, and, therefore, two novel species of the genus Haloferax are proposed: Haloferax profundi sp. nov. (type strain SB29T = JCM 19567T = CGMCC 1.14960T) and Haloferax marisrubri sp. nov. (type strain SB3T = JCM 19566T = CGMCC 1.14958T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 1987-1994 ◽  
Author(s):  
Taishi Tsubouchi ◽  
Yasuhiro Shimane ◽  
Keiko Usui ◽  
Shigeru Shimamura ◽  
Kozue Mori ◽  
...  

A novel Gram-negative, aerobic, psychrotolerant, alkali-tolerant, heterotrophic and dimorphic prosthecate bacterium, designated strain TAR-001T, was isolated from deep-sea floor sediment in Japan. Cells of this strain had a dimorphic life cycle and developed an adhesive stalk at a site not coincident with the centre of the cell pole, and the other type of cell, a swarm cell, had a polar flagellum. Colonies were glossy, viscous and yellowish-white in colour. The temperature, pH and salt concentration range for growth were 2–41 °C, pH 6.5–10.0 and 1–4 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-001T belongs to the family Caulobacteraceae of the class Alphaproteobacteria , and lies between the genus Brevundimonas and the genus Caulobacter . Levels of similarity between the 16S rRNA gene sequence of strain TAR-001T and those of the type strains of Brevundimonas species were 93.3–95.7 %; highest sequence similarity was with the type strain of Brevundimonas diminuta . Levels of sequence similarity between those of the type strains of Caulobacter species were 94.9–96.0 %; highest sequence similarity was with the type strain of Caulobacter mirabilis . The G+C content of strain TAR-001T was 67.6 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C18 : 1ω7c and C16 : 0, and the presence of 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d-glucopyranuronosyl]glycerol suggests strain TAR-001T is more closely to the genus Brevundimonas than to the genus Caulobacter . The mean DNA–DNA hybridization levels between strain TAR-001T and the type strains of two species of the genus Brevundimonas were higher than that of the genus Caulobacter . On the basis of polyphasic biological features and the 16S rRNA gene sequence comparison presented here, strain TAR-001T is considered to represent a novel species of the genus Brevundimonas , for which the name Brevundimonas abyssalis sp. nov. is proposed; the type strain is TAR-001T ( = JCM 18150T = CECT 8073T).


2005 ◽  
Vol 55 (2) ◽  
pp. 941-947 ◽  
Author(s):  
Grigorii I. Karavaiko ◽  
Tat'yana I. Bogdanova ◽  
Tat'yana P. Tourova ◽  
Tamara F. Kondrat'eva ◽  
Iraida A. Tsaplina ◽  
...  

Comparative analysis of 16S rRNA gene sequences, DNA–DNA hybridization data and phenotypic properties revealed that ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 is not a member of the genus Sulfobacillus. Phylogenetically, strain K1 is closely related to unclassified strains of the genus Alicyclobacillus: the 16S rRNA gene sequence of strain K1 is similar to that of Alicyclobacillus sp. AGC-2 (99·6 %), Alicyclobacillus sp. 5C (98·9 %) and Alicyclobacillus sp. CLG (98·6 %) and bacterium GSM (99·1 %). The 16S rRNA gene sequence similarity values for strain K1 and species of the genus Alicyclobacillus with validly published names were in the range 92·1–94·6 %, and for S. thermosulfidooxidans VKM B-1269T the value was 87·7 %. Sulfobacillus disulfidooxidans SD-11T was also phylogenetically related to strain K1 (92·6 % sequence similarity) and thus belonged to the genus Alicyclobacillus. Chemotaxonomic data, such as the major cell-membrane lipid components of strains K1 and SD-11T (ω-alicyclic fatty acids) and the major isoprenoid quinone (menaquinone MK-7) of strain K1, supported the affiliation of strains K1 and SD-11T to the genus Alicyclobacillus. Physiological and molecular biological tests allowed genotypic and phenotypic differentiation of strains K1 and SD-11T from the nine Alicyclobacillus species with validly published names. The G+C content of the DNA of strain K1 was 48·7±0·6 mol%; that of strain SD-11T was 53±1 mol%. DNA–DNA reassociation studies showed low relatedness (22 %) between strains K1 and SD-11T, and even lower relatedness (3–5 %) between these strains and Alicyclobacillus acidocaldarius subsp. acidocaldarius ATCC 27009T, DSM 446T. DNA reassociation of strains K1 and SD-11T with Alicyclobacillus cycloheptanicus DSM 4006T gave values of 15 and 21, respectively. Based on the phenotypic and phylogenetic characteristics of strains K1 and SD-11T, Alicyclobacillus tolerans sp. nov. (type strain, K1T=VKM B-2304T=DSM 16297T) and Alicyclobacillus disulfidooxidans comb. nov. (type strain, SD-11T=ATCC 51911T=DSM 12064T) are proposed.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2011 ◽  
Vol 61 (12) ◽  
pp. 2974-2978 ◽  
Author(s):  
Jinxing Zhu ◽  
Xiaoli Liu ◽  
Xiuzhu Dong

Two mesophilic methanogenic strains, designated TS-2T and GHT, were isolated from sediments of Tuosu lake and Gahai lake, respectively, in the Qaidam basin, Qinghai province, China. Cells of both isolates were rods (about 0.3–0.5×2–5 µm) with blunt rounded ends and Gram-staining-positive. Strain TS-2T was motile with one or two polar flagella and used only H2/CO2 for growth and methanogenesis. Strain GHT was non-motile, used both H2/CO2 and formate and displayed a variable cell arrangement depending on the substrate: long chains when growing in formate (50 mM) or under high pressure H2 and single cells under low pressure H2. Phylogenetic analysis based on 16S rRNA gene sequences placed the two isolates in the genus Methanobacterium. Strain TS-2T was most closely related to Methanobacterium alcaliphilum NBRC 105226T (96 % 16S rRNA gene sequence similarity). Phylogenetic analysis based on the alpha subunit of methyl-coenzyme M reductase also supported the affiliation of the two isolates with the genus Methanobacterium. DNA–DNA relatedness between the isolates and M. alcaliphilum DSM 3387T was 39–53 %. Hence we propose two novel species, Methanobacterium movens sp. nov. (type strain TS-2T = AS 1.5093T = JCM 15415T) and Methanobacterium flexile sp. nov. (type strain GHT = AS 1.5092T = JCM 15416T).


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


Sign in / Sign up

Export Citation Format

Share Document