scholarly journals Aquitalea aquatilis sp. nov., isolated from Jungwon waterfall

2020 ◽  
Vol 70 (9) ◽  
pp. 4903-4907 ◽  
Author(s):  
Hien T.T. Ngo ◽  
HongYong Kim ◽  
Huan Trinh ◽  
Tae-Hoo Yi

A Gram-stain-negative, facultative anaerobic, motile, short rods and yellow-pigmented bacterium, designated strain THG-DN7.12T, was isolated from water collected at Jungwon waterfall on Yongmun mountain, Republic of Korea. According to 16S rRNA gene sequence comparisons, strain THG-DN7.12T was found to be most closely related to Aquitalea denitrificans 5YN1-3T (98.9 % sequence similarity), Aquitalea magnusonii TRO-001DR8T (98.7 %) and Aquitalea pelogenes P1297T (98.0 %). The DNA–DNA relatedness between strain THG-DN7.12T and its phylogenetically closest neighbours was below 70.0 %. The strain's DNA G+C content was 59.7 mol%. The major polar lipid was found to be phosphatidylethanolamine. Summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C16 : 0 were identified as the major fatty acids. Ubiquinone Q-8 was detected as the only respiratory quinone. These data supported the affiliation of strain THG-DN7.12T to the genus Aquitalea . Strain THG-DN7.12T was distinguished from related Aquitalea species by physiological and biochemical tests. Therefore, the novel isolate represents a novel species, for which the name Aquitalea aquatilis sp. nov. is proposed, with THG-DN7.12T as the type strain (=KACC 18847T=CCTCC AB 2016185T).

2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1259-1264 ◽  
Author(s):  
Ming-Hui Chen ◽  
Shih-Yi Sheu ◽  
Chaolun Allen Chen ◽  
Jih-Terng Wang ◽  
Wen-Ming Chen

A bacterial strain, isolated from a sample of reef-building coral (Isopora palifera) collected off the coast of southern Taiwan, was characterized using a polyphasic taxonomic approach. The strain, designated sw-2T, was Gram-staining-negative, aerobic, rod-shaped and motile, with subpolar flagella, and formed greyish pink colonies. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain sw-2T was most closely related to Roseivivax halodurans Och 239T (97.4 % sequence similarity) and Roseivivax halotolerans Och 210T (96.4 %). The novel strain did not require NaCl for growth and exhibited optimal growth at 35–40 °C, at pH 7.5–8.0 and with 3–7 % (w/v) NaCl. It produced bacteriochlorophyll a under aerobic conditions. Summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 63.7 %) predominated in the cellular fatty acid profile. The novel strain’s major respiratory quinone was ubiquinone Q-10 and its genomic DNA G+C content was 68.8 mol%. The polar lipid profile consisted of a mixture of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, sulfo-quinovosyl diacylglycerol and three uncharacterized phospholipids. The level of DNA–DNA relatedness between strain sw-2T and Roseivivax halodurans Och 239T was only 15.0 %. The results of physiological and biochemical tests allowed the clear phenotypic differentiation of the novel strain from all established species of the genus Roseivivax . Based on the genotypic, phenotypic and chemotaxonomic data, strain sw-2T represents a novel species in the genus Roseivivax , for which the name Roseivivax isoporae sp. nov. is proposed. The type strain is sw-2T ( = LMG 25204T = BCRC 17966T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4396-4401 ◽  
Author(s):  
Jung-Eun Yang ◽  
Heung-Min Son ◽  
Jung Min Lee ◽  
Heon-Sub Shin ◽  
Sang-Yong Park ◽  
...  

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain, designated THG-45T, was isolated from soil of a ginseng field of Pocheon province in the Republic of Korea and its taxonomic position was investigated by a polyphasic approach. Growth occurred at 4–30 °C, at pH 5.5–9.0 and with 0–2 % (w/v) NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity, strain THG-45T was shown to belong to the genus Pedobacter and was related to Pedobacter borealis G-1T (98.8 %), P. alluvionis NWER-II11T (97.9 %), P. agri PB92T (97.9 %), P. terrae DS-57T (97.5 %), P. suwonensis 15-52T (97.4 %), P. sandarakinus DS-27T (97.0 %) and P. soli 15-51T (97.0 %), but DNA relatedness between strain THG-45T and these strains was below 36 %. The G+C content of the genomic DNA was 39 mol%. The only isoprenoid quinone detected in strain THG-45T was menaquinone-7 (MK-7). The predominant fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH, and the major polar lipids were phosphatidylethanolamine and an unidentified aminophosphoglycolipid. Phenotypic data and phylogenetic inference supported the affiliation of strain THG-45T to the genus Pedobacter , and a number of biochemical tests differentiated strain THG-45T from the recognized species of the genus Pedobacter . Therefore, the novel isolate represents a novel species, for which the name Pedobacter ginsenosidimutans sp. nov. is proposed, with THG-45T as the type strain ( = KACC 14530T = JCM 16721T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Lei Zhang ◽  
Xihui Shen ◽  
Yingbao Liu ◽  
Shiqing Li

A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10T, was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30–37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10T was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311T (90.2 % sequence similarity), Marivirga sericea LMG 13021T (89.2 %), Cesiribacter andamanensis AMV16T (89.1 %) and Marivirga tractuosa DSM 4126T (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10T should be classified as a novel species of a new genus in the family Flammeovirgaceae , for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10T ( = CCTCC AB 208222T = KCTC 23983T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2018-2024 ◽  
Author(s):  
Joong-Jae Kim ◽  
Eiko Kanaya ◽  
Hang-Yeon Weon ◽  
Yuichi Koga ◽  
Kazufumi Takano ◽  
...  

A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3T, was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9–33 °C (optimum 25 °C) and pH 5.6–7.9 (optimum pH 6.1–7.0). No growth occurred with >2 % (w/v) NaCl. Strain 15C3T reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3T was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3T belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33T (96.9 % sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3T is considered to represent a novel species in the genus Flavobacterium , for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3T ( = KACC 14224T  = JCM 16527T). Emended descriptions of F. hercynium , Flavobacterium resistens and Flavobacterium johnsoniae are also given.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1464-1470 ◽  
Author(s):  
Wei Su ◽  
Zhichao Zhou ◽  
Fan Jiang ◽  
XuLu Chang ◽  
Ying Liu ◽  
...  

A Gram-reaction-negative, motile, non-violet-pigmented, rod-shaped bacterial strain, designated E1T, was isolated from Arctic lake sediment. Growth occurred at 4 °C–28 °C (optimum, 18 °C), at pH 4–11(optimum, 9–10) and in the presence of 0–1 % (w/v) NaCl. The taxonomic position of E1T was analysed using a polyphasic approach. Strain E1T exhibited 16S rRNA gene sequence similarity value of 98.1 % with respect to the type strain of Iodobacter fluviatilis , but no more than 93 % with the type strains of other recognized species. A further DNA–DNA hybridization experiment was conducted, which demonstrated unambiguously that strain E1T was distinct from I. fluviatilis ATCC 33051T (51.3 % relatedness). The DNA G+C content of strain E1T was 52.3 mol%. Chemotaxonomic data [Q-8 as the monospecific respiratory quinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 56.1 %) and C16 : 0 (18.8 %) as the major cellular fatty acids] supported the affiliation of strain E1T to the genus Iodobacter . However, the results of physiological and biochemical tests allowed phenotypic differentiation of strain E1T from I. fluviatilis ATCC 33051T. On the basis of phenotypic and genotypic properties, strain E1T represents a novel species of genus Iodobacter, for which the name Iodobacter limnosediminis sp. nov. is proposed. The type strain is E1T ( = CCTCC AB 2010224T = NRRL B-59456T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1536-1542 ◽  
Author(s):  
Ming-Hui Chen ◽  
Shih-Yi Sheu ◽  
Chaolun Allen Chen ◽  
Jih-Terng Wang ◽  
Wen-Ming Chen

A bacterial strain designated SW15T was isolated from a sample of the reef-building coral Isopora palifera, collected in southern Taiwan. The novel strain was characterized using a polyphasic taxonomic approach. Cells of strain SW15T were Gram-negative, aerobic, light yellow, rod-shaped and motile by means of a single polar flagellum. In phylogenetic analyses based on 16S rRNA gene sequences, strain SW15T appeared to belong to the genus Idiomarina in the class Gammaproteobacteria and to be most closely related to Idiomarina homiensis PO-M2T (97.6 % sequence similarity). Strain SW15T exhibited optimal growth between 20 and 30 °C, with NaCl between 3 % and 4 % (w/v) and at a pH value between 7 and 8. Predominant cellular fatty acids were iso-C15 : 0 (31.1 %), iso-C17 : 0 (15.4 %), iso-C17 : 1ω9c (10.0 %) and C16 : 0 (8.8 %). The major respiratory quinone was ubiquinone Q-8. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, an uncharacterized aminolipid and several uncharacterized phospholipids. The DNA G+C content was 51.1 mol%. The level of DNA–DNA relatedness between strain SW15T and Idiomarina homiensis PO-M2T was 42.6–56.5 %. The results of physiological and biochemical tests allowed the clear phenotypic differentiation of the novel strain from established species of the genus Idiomarina . Based on the genotypic, phenotypic and chemotaxonomic data, strain SW15T represents a novel species in the genus Idiomarina , for which the name Idiomarina aquimaris sp. nov. is proposed, with SW15T ( = LMG 25374T = BCRC 80083T) as the type strain.


Author(s):  
Vadim Kevbrin ◽  
Yulia Boltyanskaya ◽  
Veronika Koziaeva ◽  
Maria Uzun ◽  
Denis Grouzdev

A prosthecate bacterial strain, designated G-192T, was isolated from decaying biomass of a haloalkaliphilic cyanobacterium Geitlerinema sp. Z-T0701. The cells were aerobic, Gram-negative, non-endospore-forming and dimorphic, occurring either as sessile bacteria with a characteristic stalk or as motile flagellated cells. The strain utilized a limited range of substrates, mostly peptonaceous, but was able to degrade whole proteins. Growth occurred at 5–46 °C (optimum, 35–40 °C), pH 7.3–10.3 (optimum, pH 8.0–9.0), 0–14 % NaCl (v/w; optimum, 2.0–6.0 %, v/w). The G+C content of the genomic DNA of strain G-192T was 66.8%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain G-192T formed a distinct evolutionary lineage within the family Hyphomonadaceae . Strain G-192T showed the highest 16S rRNA sequence similarity to Glycocaulis profundi ZYF765T (95.2%), Oceanicaulis stylophorae GISW-4T (94.2%) and Marinicauda salina WD6-1T (95.5%). The major cellular fatty acids (>5% of the total) were C18:1 ω9c, C18:0 and 11-methyl-C18:1 ω7c. The major polar lipids were glycolipids and phospholipids. The only respiratory quinone was ubiquinone-10 (Q-10). Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain G-192T represents a novel species of a new genus, for which the name Alkalicaulis satelles gen. nov., sp. nov. is proposed. The type strain is G-192T (=VKM B-3306T=KCTC 72746T). The strain is the first representative of the stalked bacteria associated with a haloalkaliphilic cyanobacterium. Based on phylogenomic indices and phenotypic data, it is proposed to evolve two novel families Maricaulaceae fam. nov. and Robiginitomaculaceae fam. nov. out of the current family Hyphomonadaceae . In addition, it is proposed to place the first two families in the novel order Maricaulales ord. nov. and novel order Hyphomonadales ord. nov. is proposed to accommodate the family Hyphomonadaceae .


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1926-1931 ◽  
Author(s):  
T. N. R. Srinivas ◽  
P. Vishnu Vardhan Reddy ◽  
Z. Begum ◽  
P. Manasa ◽  
S. Shivaji

A novel Gram-staining-negative, coccoid, non-motile bacterium, designated strain V1-41T, was isolated from a sample of marine sediment collected, at a depth of 200 m, from Kongsfjorden (an inlet on the west coast of Spitsbergen, an island that forms part of the Svalbard archipelago in the Arctic Ocean). The strain formed cream–brown colonies on marine agar. Cells of the novel strain were positive in tests for catalase, oxidase, lysine decarboxylase and ornithine decarboxylase activities but negative for gelatinase and lipase activities. They hydrolysed aesculin, starch and urea, but not casein or DNA. Most of the cellular fatty acids were medium-chain and saturated (37.1 %) or long-chain and unsaturated (27.8 %), with C12 : 0 (37.1 %), C18:1ω7c, and summed features 2 (19.3%) and 3 (24.1%) predominating. The major respiratory quinone was Q-8. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified aminophospholipids, four unidentified phospholipids and one other unidentified lipid. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain’s closest known relatives were Oceanisphaera litoralis DSM 15406T (98.5 % sequence similarity) and Oceanisphaera donghaensis BL1T (98.3 %). In DNA–DNA hybridizations, however, the levels of relatedness between strain V1-41T and O. litoralis DSM 15406T and between the novel strain and O. donghaensis DSM 17589T were found to be only 19 % and 29 %, respectively. Based on these low levels of similarity at the DNA–DNA level and the phenotypic and chemotaxonomic differences from O. litoralis DSM 15406T and O. donghaensis DSM 17589T, strain V1-41T represents a novel species of the genus Oceanisphaera for which the name Oceanisphaera arctica sp. nov. is proposed. The type strain is V1-41T ( = CCUG 58690T = KCTC 23013T = NBRC 106171T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2509-2514 ◽  
Author(s):  
Ngoc Hoang Trinh ◽  
Jaisoo Kim

A Gram-stain-negative, aerobic and short rod-shaped bacterial strain, designated LD6T, was isolated from a forest soil sample in Suwon, Gyeonggi-do, Republic of Korea. Strain LD6T grew at 10–37 °C (optimal temperature, 28 °C), and tolerated pH 8.0 and 2 % (w/v) NaCl. Strain LD6T was related most closely to members of the genus Paraburkholderia , namely Paraburkholderia azotifigens NF2-5-3T (98.2 % 16S rRNA gene sequence similarity), P. megapolitana A3T (97.9 %), P. ginsengiterrae DCY85T (97.9 %) and P. caribensis MWAP64T (97.7 %). The strain grew well on R2A agar, tryptone soya agar, Mueller-Hinton agar and nutrient agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and glycolipid. The major respiratory quinone was ubiquinone 8 (Q-8). The main fatty acids were C17 : 0 cyclo, C16 : 0, C16 : 0 3-OH, C19 : 0 cyclo ω8c and C12 : 0. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.4 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain LD6T and its reference type strains ranged from 80.3 to 82.4%, and from 23.7 to 33.7%, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain LD6T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Paraburkholderia . Therefore, strain LD6T is considered to represent a novel species, for which the name Paraburkholderia flava sp. nov. is proposed. The type strain is LD6T (=KACC 21387T=JCM 33640T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 1006-1011 ◽  
Author(s):  
Y. Subhash ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains of bacteria, JC213T and JC215T, were isolated from desert soil. Colonies were red to pink and cells Gram-stain-negative. Both strains were oxidase- and catalase-positive and hydrolysed casein. In both strains, phosphatidylethanolamine was the major polar lipid, iso-C15 : 0 was the major fatty acid and the bacteriohopane derivative, BHD1, was the major hopanoid. The genomic DNA G+C contents of strains JC213T and JC215T were 52.7 and 46.3 mol%, respectively. 16S rRNA gene sequence comparisons indicated that both strains belong to the genus Pontibacter within the family Cytophagaceae and the phylum Bacteroidetes . Strain JC213T showed the highest sequence similarity to Pontibacter populi HLY7-15T (96.6 %) and with other species of the genus Pontibacter sequence similarity was less than 96 %. Strain JC215T exhibited highest sequence similarity with Pontibacter lucknowensis DM9T (95.1 %) and shared 95 % or less sequence similarity with other species of the genus Pontibacter . The sequence similarity between strains JC213T and JC215T was 95.8 %. Distinct morphological, physiological and genotypic differences from previously described taxa support JC213T and JC215T being representatives of two novel species of the genus Pontibacter , for which the names Pontibacter ruber sp. nov. and Pontibacter deserti sp. nov. are proposed and the type strains are JC213T ( = KCTC 32442T = LMG 27669T) and JC215T ( = KCTC 32443T = LMG 27670T), respectively.


Sign in / Sign up

Export Citation Format

Share Document