Litoreibacter roseus sp. nov., a novel bacteriochlorophyll a-containing bacterium

Author(s):  
Masataka Kanamuro ◽  
Yuki Sato-Takabe ◽  
So Muramatsu ◽  
Setsuko Hirose ◽  
Yuki Muramatsu ◽  
...  

A strictly aerobic, bacteriochlorophyll (BChl) a-containing alphaproteobacterium, designated strain K6T, was isolated from seawater around an aquaculture site in the Uwa Sea in Japan. The novel strain grew optimally at 30 °C at pH 7.0–7.5 and in the presence of 2.0 % (w/v) NaCl. The nonmotile and coccoid or rod-shaped cells formed pink-pigmented colonies on agar plates containing organic compounds. Cells showed an in vivo absorption maximum at 870 nm in the near-infrared region, indicating the presence of BChl a in the light-harvesting 1 complex. The new bacterial strain was Gram-stain-negative and oxidase- and catalase-positive. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain K6T was closely related to species in the genus Litoreibacter . The closest phylogenetic relatives of strain K6T were Litoreibacter ponti GJSW-31T (98.56 % sequence similarity), Litoreibacter janthinus KMM 3842T (97.63 %) and Litoreibacter albidus KMM 3851T (96.88 %). The G+C content of the genomic DNA was 58.26 mol%. The average nucleotide identity value of strain K6T with the type strain of L. ponti was 77.16 % (SD 4.79 %). The digital DNA−DNA hybridization value of strain K6T with the type strain of L. ponti was 19.40 %. The respiratory quinone was ubiquinone-10. The major cellular fatty acids were C18 : 1 ω7c, C16 : 0 and 11-methyl C18 : 1 ω7c. The dominant polar lipids were phosphatidylcholine and phosphatidylglycerol. On the basis of the genetic and phenotypic data obtained in the present study, we propose a new species in the genus Litoreibacter : Litoreibacter roseus sp. nov., whose type strain is K6T (=DSM 110109T=NBRC 114114T). Strain K6T represents the first confirmed species that produces BChl a within the genus Litoreibacter .

2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 370-374 ◽  
Author(s):  
Hao Zhang ◽  
Ming-gen Cheng ◽  
Bin Sun ◽  
Su-hui Guo ◽  
Man Song ◽  
...  

A Gram-stain-negative bacterium, designated XIN-1T, was isolated from a farmland river sludge sample in Suzhou, China. Cells of strain XIN-1T were strictly aerobic, non-motile and rod-shaped. Strain XIN-1T grew optimally at pH 7.0 and 28 °C. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain XIN-1T was most closely related to Flavobacterium hauense BX12T (98.2 % sequence similarity), followed by Flavobacterium beibuense F44-8T (96.3 %). The major respiratory quinone was menaquinone-6 and the major polar lipid was phosphatidylethanolamine. The major fatty acids (>5 %) were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), summed feature 4 (comprising iso-C17 : 1 I and/or anteiso-C17 : 1 B), iso-C15 : 0, C16 : 0 and iso-C17 : 0 3-OH. The genomic DNA G+C content of strain XIN-1T was 39.8 mol%. Strain XIN-1T showed low DNA–DNA relatedness with F. hauense BX12T (38.7±0.5 %). On the basis of genotypic and phenotypic data, strain XIN-1T is considered to represent a novel species of the genus Flavobacterium , for which the name Flavobacterium suzhouense sp. nov. is proposed. The type strain is XIN-1T ( = CCTCC AB 2014200T = KCTC 42107T).


Author(s):  
Xinxin He ◽  
Ronghua Liu ◽  
Jinchang Liang ◽  
Yuying Li ◽  
Xiuxiu Zhao ◽  
...  

A Gram-staining-negative, strictly aerobic, long-rod shaped with no flagellum and yellow-pigmented bacterium designated strain ZXX205T, was isolated from the hadal seawater at the depth of 7500 m in the Mariana Trench, Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences placed strain ZXX205T within the genus Winogradskyella and strain ZXX205T was most closely related to Winogradskyella flava KCTC 52348T and Winogradskyella echinorum KCTC 22026T with 96.9 % and 96.6 % sequence similarity, respectively. The sequence similarities to all other type strains were 96.3 % or less, and to the type strain Winogradskyella thalassocola LMG 22492T was 94.1 %. Growth occurred in the presence of 0–9.0 % (w/v) NaCl (optimum 3.0 %), at 4–45 °C (optimum 28 °C) and pH 6.0–9.0 (optimum pH 7.5). The sole respiratory quinone was menaquinone 6 (MK-6). The dominant cellular fatty acids (>10 %) of strain ZXX205T were iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH and iso-C16 : 0. The polar lipids profile contained predominantly phosphatidylethanolamine, four glycolipids, four unidentified aminolipids and three unidentified lipids. The genomic DNA G+C content was 35.5 %. The DNA–DNA relatedness (DDH) values between strain ZXX205T and the most closely related species Winogradskyella flava and Winogradskyella echinorum were 21.1 and 20.4 %, respectively. Based on polyphasic taxonomic analysis, strain ZXX205T is considered to represent a novel species in the genus Winogradskyella of the family Flavobacteriaceae , for which the name Winogradskyella ouciana is proposed. The type strain is ZXX205T (=MCCC 1K03851T=JCM 33665T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


2020 ◽  
Vol 70 (3) ◽  
pp. 2132-2136 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Kyung-Sook Whang

A Gram-stain-negative bacterium, designated strain PF-30T, was isolated from floodwater of a paddy field in South Korea. Strain PF-30T was found to be a strictly aerobic, motile and pink-pigmented rods which can grow at 25–40 °C (optimum, 28 °C), at pH 5.0–9.0 (optimum pH 7.0) and at salinities of 0.5–3.0 % NaCl (optimum 0.5 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain PF-30T belongs to the genus Elioraea , showing highest sequence similarity to Elioraea tepidiphila TU-7T (97.1%) and less than 91.3 % similarity with other members of the family Acetobacteraceae . The average nucleotide identity (ANI) and DNA–DNA relatedness between the strain PF-30T and E. tepidiphila TU-7T yielded an ANI value of 75.1 % and DNA–DNA relatedness of 11.7±0.7 %, respectively. The major fatty acids were identified as C18 : 0 and C18 : 1 ω7c. The predominant respiratory quinone was identified as Q-10. The DNA G+C content was determined to be 69.9 mol%. The strain PF-30T was observed to produce plant-growth-promoting materials such as indole-3-acetic acid (IAA), siderophore and phytase. On the basis of the results from phylogenetic, chemotaxonomic and phenotypic data, we concluded that strain PF-30T represents a novel species of the genus Elioraea , for which the name Elioraea rosea sp. nov. is proposed. The type strain is PF-30T (=KACC 19985T=NBRC 113984T).


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4396-4401 ◽  
Author(s):  
Jung-Eun Yang ◽  
Heung-Min Son ◽  
Jung Min Lee ◽  
Heon-Sub Shin ◽  
Sang-Yong Park ◽  
...  

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain, designated THG-45T, was isolated from soil of a ginseng field of Pocheon province in the Republic of Korea and its taxonomic position was investigated by a polyphasic approach. Growth occurred at 4–30 °C, at pH 5.5–9.0 and with 0–2 % (w/v) NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity, strain THG-45T was shown to belong to the genus Pedobacter and was related to Pedobacter borealis G-1T (98.8 %), P. alluvionis NWER-II11T (97.9 %), P. agri PB92T (97.9 %), P. terrae DS-57T (97.5 %), P. suwonensis 15-52T (97.4 %), P. sandarakinus DS-27T (97.0 %) and P. soli 15-51T (97.0 %), but DNA relatedness between strain THG-45T and these strains was below 36 %. The G+C content of the genomic DNA was 39 mol%. The only isoprenoid quinone detected in strain THG-45T was menaquinone-7 (MK-7). The predominant fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH, and the major polar lipids were phosphatidylethanolamine and an unidentified aminophosphoglycolipid. Phenotypic data and phylogenetic inference supported the affiliation of strain THG-45T to the genus Pedobacter , and a number of biochemical tests differentiated strain THG-45T from the recognized species of the genus Pedobacter . Therefore, the novel isolate represents a novel species, for which the name Pedobacter ginsenosidimutans sp. nov. is proposed, with THG-45T as the type strain ( = KACC 14530T = JCM 16721T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 703-708 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A novel bacterium, designated strain F051-1T, isolated from a seawater sample collected from the coast at Damupo beach in Pohang, Korea, was investigated in a polyphasic taxonomic study. Cells were yellow-pigmented, strictly aerobic, Gram-staining-negative and rod-shaped. The temperature, pH and NaCl ranges for growth were 4–30 °C, pH 6.0–9.0 and 1.0–6.0 % (w/v), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F051-1T belongs to the genus Psychroserpens in the family Flavobacteriaceae . Its closest relatives were Psychroserpens burtonensis ACAM 188T (96.8 % 16S rRNA gene sequence similarity) and Psychroserpens mesophilus KOPRI 13649T (95.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and anteiso-C15 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and eight unidentified lipids. The major respiratory quinone was menaquinone-6 and the genomic DNA G+C content of the strain was 33.5 mol%. On the basis of phenotypic, phylogenetic and genotypic data, strain F051-1T represents a novel species within the genus Psychroserpens , for which the name Psychroserpens damuponensis sp. nov. is proposed. The type strain is F051-1T ( = KCTC 23539T  = JCM 17632T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1264-1270 ◽  
Author(s):  
Heike Anders ◽  
Peter F. Dunfield ◽  
Kirill Lagutin ◽  
Karen M. Houghton ◽  
Jean F. Power ◽  
...  

A strictly aerobic, thermophilic, moderately acidophilic, non-spore-forming bacterium, strain P373T, was isolated from geothermally heated soil at Waikite, New Zealand. Cells were filamentous rods, 0.2–0.4 µm in diameter and grew in chains up to 80 µm in length. On the basis of 16S rRNA gene sequence similarity, strain P373T was shown to belong to the family Chitinophagaceae (class Sphingobacteriia ) of the phylum Bacteroidetes , with the most closely related cultivated strain, Chitinophaga pinensis UQM 2034T, having 87.6 % sequence similarity. Cells stained Gram-negative, and were catalase- and oxidase-positive. The major fatty acids were i-15 : 0 (10.8 %), i-17 : 0 (24.5 %) and i-17 : 0 3-OH (35.2 %). Primary lipids were phosphatidylethanolamine, two unidentified aminolipids and three other unidentified polar lipids. The presence of sulfonolipids (N-acyl-capnines) was observed in the total lipid extract by mass spectrometry. The G+C content of the genomic DNA was 47.3 mol% and the primary respiratory quinone was MK-7. Strain P373T grew at 35–63 °C with an optimum temperature of 60 °C, and at pH 5.5–8.7 with an optimum growth pH of 7.3–7.4. NaCl tolerance was up to 5 % (w/v) with an optimum of 0.1–0.25 % (w/v). Cell colonies were non-translucent and pigmented vivid yellow–orange. Cells displayed an oxidative chemoheterotrophic metabolism. The distinct phylogenetic position and the phenotypic characteristics separate strain P373T from all other members of the phylum Bacteroidetes and indicate that it represents a novel species in a new genus, for which the name Thermoflavifilum aggregans gen. nov., sp. nov. is proposed. The type strain of the type species is P373T ( = ICMP 20041T = DSM 27268T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 134-140 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Chiu-Chung Young ◽  
Shih-Yi Sheu

A bacterial strain, designated NSW-5T, was isolated from a water sample taken from Niao-Song Wetland Park in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain NSW-5T were strictly aerobic, Gram-stain-negative, non-motile and polymorphic, being straight, vibrioid, curved and spiral-shaped rods surrounded by a thick capsule and forming light pink-coloured colonies. Some rings consisting of several cells were present. Growth occurred at 10–40 °C (optimum, 25 °C), with 0–3.0 % NaCl (optimum, 0 %) and at pH 6.0–8.0 (optimum, pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain NSW-5T belonged to the genus Arcicella with sequence similarities of 98.6, 98.0 and 97.3 % with Arcicella aquatica NO-502T, Arcicella rosea TW5T and Arcicella aurantiaca TNR-18T, respectively. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 20.8 %), C16 : 0 (14.6 %), iso-C15 : 0 (13.8 %), C16 : 1ω5c (12.5 %) and C18 : 0 (11.4 %), and the only respiratory quinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine and several uncharacterized glycolipids, aminolipids, phospholipids and aminophospholipids. The DNA G+C content of strain NSW-5T was 44.1 mol%. The DNA–DNA relatedness of strain NSW-5T with respect to recognized species of the genus Arcicella was less than 70 %. On the basis of phylogenetic inference and phenotypic data, strain NSW-5T should be classified as a representative of a novel species, for which the name Arcicella rigui sp. nov. is proposed. The type strain is NSW-5T ( = KCTC 23307T = BCRC 80260T). Emended descriptions of the genus Arcicella and of Arcicella aquatica , Arcicella rosea and Arcicella aurantiaca are also proposed.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2018-2024 ◽  
Author(s):  
Joong-Jae Kim ◽  
Eiko Kanaya ◽  
Hang-Yeon Weon ◽  
Yuichi Koga ◽  
Kazufumi Takano ◽  
...  

A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3T, was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9–33 °C (optimum 25 °C) and pH 5.6–7.9 (optimum pH 6.1–7.0). No growth occurred with >2 % (w/v) NaCl. Strain 15C3T reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3T was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3T belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33T (96.9 % sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3T is considered to represent a novel species in the genus Flavobacterium , for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3T ( = KACC 14224T  = JCM 16527T). Emended descriptions of F. hercynium , Flavobacterium resistens and Flavobacterium johnsoniae are also given.


Sign in / Sign up

Export Citation Format

Share Document