Actinomadura litoris sp. nov., an actinobacterium isolated from sandy soil in Sanya

Author(s):  
Peng Cao ◽  
Xi Xu ◽  
Chenxu Li ◽  
Liyuan Han ◽  
Wenhao Mu ◽  
...  

A novel actinobacterium, designated strain NEAU-AAG5T, was isolated from sandy soil collected from Niuwang island in Sanya, Hainan Province, PR China. The taxonomic position of the strain was investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-AAG5T belongs to the genus Actinomadura and shared highest sequence similarity with Actinomadura macra NBRC 14102T (98.8 %). Strain NEAU-AAG5T grows at 20–40 °C (optimum, 28 °C), pH 6–10 (optimum, pH 7) and has NaCl tolerance of 0–3 %. The menaquinones were identified as MK-9(H4) (4.2 %), MK-9(H6) (49.2 %) and MK-9(H8) (46.5 %). The major fatty acids were C16 : 0 (31.4 %), 10-methyl C18 : 0 (21.3 %) and C18 : 1  ω9c (15.7 %). The polar lipids were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannoside, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain NEAU-AAG5T based on whole genome sequences was 72.8 mol%. Digital DNA–DNA hybridization between strain NEAU-AAG5T and its closest phylogenetic neighbour, A. macra NBRC 14102T, resulted in similarity value of 28.0 % (<70 %). Additionally, the average nucleotide identity was 84.2 % for A. macra NBRC 14102T. On the basis of phenotypic, genotypic and phylogenetic data, strain NEAU-AAG5T can be characterized to represent a novel species of the genus Actinomadura , for which the name Actinomadura litoris sp. nov. is proposed. The type strain is NEAU-AAG5T (=JCM 33456T=CCTCC AA 2019043T).

Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


2020 ◽  
Vol 70 (3) ◽  
pp. 1496-1502 ◽  
Author(s):  
Jin Li ◽  
Yan Xu ◽  
Jiarong Feng ◽  
Mingqi Zhong ◽  
Qingyi Xie ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped marine bacterium, CW2-9T, was isolated from algae collected from Fujian Province in PR China. 16S rRNA gene sequence analysis showed that this strain was affiliated with the genus Tamlana in the family Flavobacteriaceae of the class Flavobacteriia and was very similar to the type strain Tamlana sedimentorum MCCC 1A10799T (96.3 % sequence similarity). The whole genome of strain CW2-9T comprised 3 997 513 bp with a G+C content of 34.3 mol%. The average nucleotide identity value between strain CW2-9T and T. sedimentorum MCCC 1A10799T was 73.8 %. Growth was observed from 15 to 40 °C (optimum, 30 °C), at pH from pH 5.0 to 10.0 (pH 8.0) and in the presence of 0–4 % (w/v) NaCl (0–1 %). The major fatty acids (>10 % of the total) were iso-C15 : 0, iso G-C15 : 1, iso-C17 : 0 3-OH and anteiso-C15 : 0. The predominant menaquinone was MK-6. The combined phylogenetic, physiological and chemotaxonomic data indicate that strain CW2-9T represents a novel species in the genus Tamlana , for which the name Tamlana fucoidanivorans sp. nov. is proposed. The type strain is CW2-9T (=CICC 24749T=KCTC 72389T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3134-3139 ◽  
Author(s):  
Jung-Hye Choi ◽  
Kyung Min Lee ◽  
Myung-Ki Lee ◽  
Chang-Jun Cha ◽  
Geun-Bae Kim

A novel strain, designated strain CU3-7T, was isolated from faeces of a two-week-old baby. The isolate was Gram-staining-positive, anaerobic and rod-shaped. Results from 16S rRNA gene sequence analysis revealed that strain CU3-7T was phylogenetically affiliated with members of the genus Bifidobacterium . Strain CU3-7T showed the highest level of sequence similarity with Bifidobacterium adolescentis KCTC 3216T (98.4 %), followed by Bifidobacterium ruminantium KCTC 3425T (97.9 %). Analysis of hsp60 sequences showed that strain CU3-7T was closely related to B. adolescentis KCTC 3216T (94.0 %) and B. ruminantium KCTC 3425T (92.5 %). The DNA–DNA hybridization values with the closely related strains were all below the cut-off value for species delineation, 17.0 % with B. ruminantium KCTC 3425T and 14.9 % with B. adolescentis KCTC 3216T. Fructose-6-phosphate phosphoketolase activity was detected. The predominant cellular fatty acids were C16 : 0 (27.7 %), C18 : 1ω9c (27.4 %) and C18 : 1ω9c dimethylacetate (15.5 %). The DNA G+C content was 58.6 mol%. On the basis of polyphasic taxonomy, strain CU3-7T should be classified as the type strain of a novel species within the genus Bifidobacterium , for which the name Bifidobacterium faecale sp. nov. is proposed ( = KACC 17904T = JCM 19861T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2690-2699 ◽  
Author(s):  
S. Wellner ◽  
N. Lodders ◽  
S. P. Glaeser ◽  
P. Kämpfer

Three pink-pigmented, aerobic, Gram-stain-negative, rod-shaped and facultatively methylotrophic strains were isolated from the phyllosphere of Trifolium repens and Cerastium holosteoides. 16S rRNA gene sequence analysis support the affiliation of all strains to the genus Methylobacterium . The closest relatives of strains C34T and T5 were Methylobacterium gnaphalii 23eT (98.0 and 98.5 % sequence similarity, respectively) and Methylobacterium organophilum JCM 2833T (97.0 and 97.2 %, respectively). Strain TA73T showed the highest sequence similarities to Methylobacterium marchantiae JT1T and Methylobacterium bullatum F3.2T (both 97.9 %), followed by Methylobacterium phyllosphaerae CBMB27T and Methylobacterium brachiatum DSM 19569T (both 97.8 %), Methylobacterium cerastii C15T and Methylobacterium radiotolerans JCM 2831T (both 97.7 %). The major components in the fatty acid profiles were C18 : 1ω7c, C16 : 0 and one unknown fatty acid for strain TA73T and C18 : 1ω7c, C16 : 1ω7c/iso-C15 : 0 2-OH, C18 : 0 and C16 : 0 for strains C34T and T5. Physiological and biochemical analysis, including DNA–DNA hybridization, revealed clear differences between the investigated strains and their closest phylogenetic neighbours. DNA–DNA hybridization studies also showed high similarities between strains C34T and T5 (59.6–100 %). Therefore, the isolates represent two novel species within the genus Methylobacterium , for which the names Methylobacterium trifolii sp. nov. (type strain TA73T = LMG 25778T = CCM 7786T) and Methylobacterium thuringiense sp. nov. (type strain C34T = LMG 25777T = CCM 7787T) are proposed.


Author(s):  
Qiao-Yan Zhang ◽  
Song Qin ◽  
Xiao-Xia Luo ◽  
Zhan-Feng Xia

A novel actinobacterium, designated TRM 44567T, was isolated from cotton soil in Xinjiang Uygur Autonomous Region, northwest PR China. Growth occurred at 16–45 °C, pH 5.0–9.0, and 0–7 % (w/v) NaCl, with optimum growth at 37 °C, pH 7.0–8.0 and 1 % (w/v) NaCl, respectively. Comparative 16S rRNA gene sequence analysis indicated that strain TRM 44567T was phylogenetically most closely related to Streptomyces chromofuscus NBRC 12851T (98.48 % sequence similarity); however, the average nucleotide identity between strain TRM 44567T and S. chromofuscus NBRC 12851T was only 83.77 %. Strain TRM 44567T possessed ll-diaminopimelic acid as the diagnostic cell-wall diamino acid. The predominant menaquinones were MK-9(H10), MK-9(H6) and MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C14 : 0 and iso-C15 : 0. The genomic DNA G+C content was 70.8 mol%. Strain TRM 44567T represents a novel species of the genus Streptomyces , for which the name Streptomyces gossypiisoli sp. nov. is proposed. The type strain is TRM 44567T (=KCTC 39957 T=CCTCC AA 2017011T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3024-3029 ◽  
Author(s):  
Luchao Han ◽  
Guiqin Yang ◽  
Xuemei Zhou ◽  
Dehui Yang ◽  
Pei Hu ◽  
...  

A Gram-reaction-positive, facultatively anaerobic, motile, endospore-forming, rod-shaped strain, designated SgZ-7T, was isolated from a windrow compost pile and was characterized by means of a polyphasic approach. Growth occurred with 0–3 % (w/v) NaCl (optimum 1 %), at pH 6.0–10.0 (optimum pH 7.2) and at 40–60 °C (optimum 50 °C). The main respiratory quinone was MK-7. The predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 46.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain SgZ-7T should be assigned to the genus Bacillus and was related most closely to Bacillus drentensis LMG 21831T (sequence similarity 97.2 %). The result of the DNA–DNA hybridization experiment revealed a low relatedness (27.2 %) between the isolate and B. drentensis LMG 21831T. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain SgZ-7T represents a novel species, for which the name Bacillus thermocopriae sp. nov. is proposed. The type strain is SgZ-7T ( = CCTCC AB 2012030T = KACC 16700T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 248-253 ◽  
Author(s):  
Shijie Jiang ◽  
Ming Chen ◽  
Shiyou Su ◽  
Mingkun Yang ◽  
Aihua Li ◽  
...  

A novel, Gram-stain-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacterium designated H-12T was isolated from a mixed sandy soil sample collected from Xinjiang, China. Strain H-12T grew at 20–37 °C (optimum, 30 °C), pH 7.0–11.0 (optimum, pH 8.5) on TGY medium with 0–5 % NaCl (w/v). 16S rRNA gene sequence analysis indicated that strain H-12T shared sequence similarities with Sphingobacterium composti DSM 18850T (90.0 %). Strain H-12T showed a low level of DNA–DNA relatedness to Sphingobacterium composti DSM 18850T (45.5 %). The predominant isoprenoid quinone of strain H-12T was MK-7 and the major polar lipid was phosphatidylethanolamine. The predominant cellular fatty acids were C16:1ω7c and/or C16 : 1ω6c, iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0, C16 : 0 3-OH and iso-C15 : 0 3-OH. DNA G+C content of strain H-12T was 44.15 mol%. On the basis of phenotypic, genetic and phylogenetic data, strain H-12T is proposed to be a representative of a novel species of the genus Sphingobacterium , for which the name Sphingobacterium arenae sp. nov. is suggested and the type strain is H-12T ( = ACCC 05758T = KCTC 32294T).


Author(s):  
Yu-feng Chen ◽  
Lin Ye ◽  
Hui-qin Huang ◽  
Ming-guo Jiang ◽  
Yong-hua Hu ◽  
...  

A Gram-stain-positive and motile bacterial strain, designated IB182363T, was isolated from surface seawater of the South China Sea. Cells grew at pH 5.0–9.5 (optimum, pH 7.0–8.0), 20–40 °C (optimum, 30 °C) and with 1–8 % (w/v) NaCl (optimum, 2–4 %). On the basis of 16S rRNA gene sequence analysis, strain IB182363T was affiliated to the genus Paenibacillus and the closest phylogenetically related species was Paenibacillus ginsengarvi DSM18677T with 96.9 % sequence similarity. The values of whole genome average nucleotide identity analysis and digital DNA–DNA hybridization between the isolate and the closely related type strains were less than 86.3 and 25.6 %, respectively. Chemotaxonomic analysis revealed that strain IB182363T possessed meso-diaminopimelic acid in the cell-wall peptidoglycan and contained menaquinone MK-7 as the predominant isoprenoid quinone. The major cellular fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid, two unidentified aminolipids, two unidentified phospholipids and four unidentified aminophospholipids. The genomic DNA G+C content was 54.5 mol%. On the basis of the above results, strain IB182363T represents a novel species of the genus Paenibacillus , for which we propose the name Paenibacillus oceani sp. nov. with the type strain IB182363T (=MCCC 1K04630T=JCM 34214T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


Author(s):  
Lina Sun ◽  
Wei Chen ◽  
Kaihua Huang ◽  
Weiguang Lyu ◽  
Xinhua Gao

Strain SJQ9T, an aerobic bacterium isolated from a soil sample collected in Shanghai, PR China, was characterized using a polyphasic approach. It grew optimally at pH 7.0, 30–35 °C and in the presence of 1 % (w/v) NaCl. A comparative analysis of 16S rRNA gene sequences showed that strain SJQ9T fell within the genus Aquabacterium . The closest phylogenetic relatives of strain SJQ9T were Aquabacterium citratiphilum DSM 11900T (98.6 % sequence similarity) and Aquabacterium commune DSM 11901T (96.4 %). Cells of the strain were Gram-stain-negative, motile, non-spore-forming, rod-shaped and positive for oxidase activity and negative for catalase. The chemotaxonomic properties of strain SJQ9T were consistent with those of the genus Aquabacterium : the major fatty acid was summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c). The isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 65.7 mol%. Strain SH9T exhibited a DNA–DNA relatedness level of 34±2 % with A. citratiphilum DSM 11900T and 28±3 % with A. commune DSM 11901T. Based on the obtained data, strain SJQ9T represents a novel species of the genus Aquabacterium , for which the name Aquabacterium soli sp. nov. is proposed. The type strain is SJQ9T (=JCM 33106T=CCTCC AB 2018284T).


Sign in / Sign up

Export Citation Format

Share Document