Algibacter onchidii sp. nov., a symbiotic bacterium isolated from a marine invertebrate

Author(s):  
Qi Yin ◽  
Jinyou Liang ◽  
Xiaoli Zheng ◽  
Yu Wang ◽  
Zhi-Man Song ◽  
...  

A novel symbiotic bacterium, designated strain XY-114T, was isolated from the cerata of an Onchidium marine invertebrate species collected in the South China Sea. Strain XY-114T was an aerobic, Gram-stain-negative, non-motile and short rod-shaped bacterium (0.5–0.8 µm wide and 1.0–1.5 µm long) without flagellum. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain XY-114T belonged to the genus Algibacter with the highest similarity of 97.2 % to the closest phylogenetic relative Algibacter aestuarii KYW371T. Cells grew at 15–37 °C (optimum, 30 °C), at pH 5.5–9.0 (optimum 7.0–8.0) and at NaCl concentrations of 0.5–5.0 % (w/v; optimum 1.5–3.0 %). The major fatty acids (>10 %) were summed feature 3 (comprising C16 : 1  ω7c and/or C16 : 1  ω6c), iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The predominant polar lipid was phosphatidylethanolamine. The predominant respiratory quinone was MK-6. Flexirubin-type pigments were absent. The genome size of strain XY-114T was 3.4 Mbp, with 34.9 mol% of DNA G+C content. The average nucleotide identity, digital DNA–DNA hybridization and amino acid identity values between strain XY-114T and A. aestuarii KYW371T were 74.5 %, 17.0±1.8 % and 73.9 %. Characterization based on phylogenetic, phenotypic, chemotaxonomic and genomic evidence demonstrated that strain XY-114T represents a novel species of the genus Algibacter , for which the name Algibacter onchidii sp. nov. is proposed. The type strain is XY-114T (=KCTC 72217T=MCCC 1K03606T).

Author(s):  
Shin Ae Lee ◽  
Tae-Wan Kim ◽  
Mee-Kyung Sang ◽  
Jaekyeong Song ◽  
Soon-Wo Kwon ◽  
...  

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated KIS59-12T, was isolated from a soil sample collected on Hodo island, Boryeong, Republic of Korea. The strain grew at 10–33 °C, pH 6.0–7.5 and with 0–4 % NaCl (w/v). Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain KIS59-12T was in the same clade as Arachidicoccus rhizosphaerae Vu-144T and Arachidicoccus ginsenosidivorans Gsoil809T with 97.5 and 97.2 % sequence similarity, respectively. Comparative genome analysis between strain KIS59-12T and A. rhizosphaerae Vu-144T showed that average nucleotide identity value was 69.4 % and the digital DNA–DNA hybridization value was 19.1 %. The major respiratory quinone was menaquinone-7. The major polar lipids were phosphatidylethanolamine and an unknown polar lipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH, which supported the affiliation of strain KIS59-12T with the genus Arachidicoccus . The major polyamines were homospermidine and putrescine. The genomic DNA G+C content was 36.4 mol%. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain KIS59-12T represents a novel species of the genus Arachidicoccus , for which the name Arachidicoccus soli sp. nov. is proposed. The type strain of Arachidicoccus soli is KIS59-12T (=KACC 17340T=NBRC 113161T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1133-1137 ◽  
Author(s):  
Yuan-Yuan Bao ◽  
Zhi Huang ◽  
Dong-Mei Mao ◽  
Xia-Fang Sheng ◽  
Lin-Yan He

A novel actinomycete, designated strain A31T, was isolated from the surface of weathered biotite in Susong, Anhui Province, China. The organism grew optimally at 30 °C, at pH 8.0 and with 1 % (w/v) NaCl. Strain A31T had A3α as the cell-wall peptidoglycan type and galactose, mannose and rhamnose as whole-cell sugars. Anteiso-C15 : 0 and anteiso-C17 : 0 were the major cellular fatty acids and MK-9(H2) was the predominant respiratory quinone. In addition, the total polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylmonomethylethanolamine and four glycolipids. The genomic DNA G+C content of strain A31T was 70.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A31T was related most closely to Sinomonas albida LC13T (98.3 % similarity), Sinomonas atrocyanea DSM 20127T (98.2 %), Sinomonas soli CW 59T (98.1 %), Sinomonas flava CW 108T (97.8 %), ‘Sinomonas mesophila’ MPKL 26 (97.3 %), Sinomonas echigonensis LC10T (97.1 %) and ‘ Sinomonas notoginsengisoli ’ SYP-B575 (96.7 %). DNA–DNA hybridization studies with the new isolate showed relatedness values of 16.0–56.6 % with its six closest neighbours. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain A31T represents a novel species of the genus Sinomonas , for which the name Sinomonas susongensis sp. nov. is proposed. The type strain is A31T ( = DSM 28245T = CCTCC AB 2014068T).


Author(s):  
Fuxiang Li ◽  
Wenhua Zhao ◽  
Qionghua Hong ◽  
Qingyong Shao ◽  
Jianling Song ◽  
...  

A Gram-stain-negative, non-spore-forming, yellow-pigmented, aerobic, pleomorphic rod-shaped bacterium, designated ZY171143T, was isolated from faeces of a cow with diarrhoea in Wenshan, Yunnan Province, south-west China and its taxonomic position was studied. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZY171143T belonged to the family Weeksellaceae and was most closely related to the only species of the genus Faecalibacter , Faecalibacter macacae CCTCC AB 2016016T with a sequence similarity of 97.8 %. The genomic OrthoANI and digital DNA–DNA hybridization values between the strain and F. macacae CCTCC AB 2016016T were 86.2 and 30.5 %, respectively. The genomic G+C content was 31.1 mol%. The predominant fatty acids (>5 %) were C15 : 0 iso, C17 : 0 iso 3OH, C16 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω7c and/or 16 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, triacylglycerol and sulfonolipid. The sole respiratory quinone was MK-6. These chemotaxonomic characterizations also revealed that strain ZY171143T was a member of the genus Faecalibacter . Based on the phenotypic, chemotaxonomic and genotypic data, strain ZY171143T represents a novel species within the genus Faecalibacter , for which the name Faecalibacter bovis sp. nov. is proposed. The type strain is ZY171143T (=CGMCC 1.13663T=KCTC 62642T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2356-2362 ◽  
Author(s):  
Yan Du ◽  
Xiang Yu ◽  
Gejiao Wang

A bacterial isolate, designated strain TS3T, was isolated from soil collected from a metal mine in Tieshan District, Daye City, Hubei Province, in central China. Cells of this strain were Gram-negative, motile and rod-shaped. The strain had ubiquinone Q-8 as the predominant respiratory quinone, phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1ω7c as the major fatty acids. The G+C content was 65.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TS3T was most closely related to Massilia niastensis 5516S-1T (98.5 %), Massilia consociata CCUG 58010T (97.6 %), Massilia aerilata 5516S-11T (97.4 %) and Massilia varians CCUG 35299T (97.2 %). DNA–DNA hybridization revealed low relatedness between strain TS3T and M. niastensis KACC 12599T (36.5 %), M. consociata CCUG 58010T (27.1 %), M. aerilata KACC 12505T (22.7 %) and M. varians CCUG 35299T (46.5 %). On the basis of phenotypic and phylogenetic characteristics, strain TS3T belongs to the genus Massilia , but is clearly differentiated from other members of the genus. The strain represents a novel species, for which the name Massilia tieshanensis sp. nov. is proposed. The type strain is TS3T ( = CCTCC AB 2010202T  = KACC 14940T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2133-2139 ◽  
Author(s):  
S. Shivaji ◽  
P. Vishnu Vardhan Reddy ◽  
S. S. S. Nageshwara Rao ◽  
Zareena Begum ◽  
Poorna Manasa ◽  
...  

A novel Gram-stain-negative, horseshoe-shaped, non-motile bacterium, designated strain M12-11BT, was isolated from a marine sediment sample collected at a depth of 200 m from Kongsfjorden, Svalbard. The colony colour was orangish red due to the presence of carotenoids. Fatty acids were dominated by branched and unsaturated fatty acids (90.8 %), with a high abundance of iso-C15 : 0 (14.9 %), anteiso-C15 : 0 (11.4 %), iso-C15 : 1 G (13.1 %), C15 : 1ω6c (5.4 %), C17 : 1ω6c (6.7 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 9.3 %) and summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c; 5.9 %). Strain M12-11BT contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Based on 16S rRNA gene sequence similarities, the type strains of Cyclobacterium amurskyense , Cyclobacterium marinum and Cyclobacterium lianum were most closely related to M12-11BT with sequence similarities of 98.2, 96.8 and 93.3 %, respectively. Other members of the family Cyclobacteriaceae had sequence similarities of <92.0 %. However, DNA–DNA hybridization with Cyclobacterium amurskyense KCTC 12363T and Cyclobacterium marinum DSM 745T showed relatedness values of only 24.5 and 32.5 % with respect to strain M12-11BT. Based on the results of DNA–DNA hybridization experiments and phenotypic and chemotaxonomic data, it appears that strain M12-11BT represents a novel species of the genus Cyclobacterium , for which the name Cyclobacterium qasimii sp. nov. is proposed; the type strain is M12-11BT ( = KCTC 23011T = NBRC 106168T) and it has a DNA G+C content of 40.5 mol%.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 171-176 ◽  
Author(s):  
Qingqing Feng ◽  
Yuan Gao ◽  
Yuichi Nogi ◽  
Xu Tan ◽  
Lu Han ◽  
...  

Two novel strains, T9T and T10, were isolated from water samples collected from Chishui River flowing through Maotai town, Guizhou, south-west China. The isolates were yellow-pigmented, Gram-reaction-negative, rod-shaped, non-motile and aerobic. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Flavobacterium , and showed highest similarities to Flavobacterium hibernum DSM 12611T (97.0 %), followed by Flavobacterium granuli Kw05T (96.7 %) and Flavobacterium pectinovorum DSM 6368T (96.7 %). The novel strains were able to grow at 20–37 °C (optimum 25 °C), pH 7.0–10.0 (optimum pH 7.0–8.0) and with 0–0.5 % (w/v) NaCl (optimum 0.5 %). The predominant fatty acids were iso-C15 : 0, C16 : 1ω7c, anteiso-C15 : 0, C15 : 0, iso-C15 : 0 3-OH and iso-C15 : 1ω10c, and menaquinone-6 (MK-6) was the main respiratory quinone. The major polar lipids were phosphatidylethanolamine, one unknown glycolipid, two unknown aminolipids and two unidentified lipids. The DNA G+C contents of strains T9T and T10 were 37.7 and 36.4 mol%, respectively. According to the phenotypic and genetic data, strains T9T and T10 represent a novel species in the genus Flavobacterium , for which the name Flavobacterium maotaiense sp. nov. is proposed. The type strain is T9T ( = CGMCC 1.12712T = JCM 19927T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 66-71 ◽  
Author(s):  
Jin-Jin Liu ◽  
Xin-Qi Zhang ◽  
Fang-Tao Chi ◽  
Jie Pan ◽  
Cong Sun ◽  
...  

A Gram-stain-negative, non-motile and aerobic bacterium, designated CF17T, was isolated from coastal planktonic seaweeds, East China Sea. The isolate grew at 18–37 °C (optimum 25–28 °C), pH 6.5–9.0 (optimum 7.0–8.0) and with 0–5 % NaCl (optimum 1–2 %, w/v) and 0.5–10 % sea salts (optimum 2–3 %, w/v). Growth of strain CF17T could be stimulated prominently by supplementing the growth medium with the autoclaved supernatant of a culture of strain CF5, which was isolated from the same sample along with strain CF17T. The cell morphology of strain CF17T was a bean-shaped rod consisting of a swollen end and a long prostheca. The phylogenetic analysis of 16S rRNA gene sequences indicated that strain CF17T clustered with Gemmobacter nectariphilus DSM 15620T within the genus Gemmobacter . The DNA G+C content of strain CF17T was 61.4 mol%. The respiratory quinone was ubiquinone Q-10. The major fatty acids included C18 : 1ω7c and C18 : 0. The polar lipids of strain CF17T consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized phospholipids, one uncharacterized aminolipid, three uncharacterized glycolipids and one uncharacterized lipid. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17T ( = CGMCC 1.11024T = JCM 18498T) is considered to represent a novel species of the genus Gemmobacter , for which the name Gemmobacter megaterium sp. nov. is proposed.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Lei Zhang ◽  
Xihui Shen ◽  
Yingbao Liu ◽  
Shiqing Li

A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10T, was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30–37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10T was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311T (90.2 % sequence similarity), Marivirga sericea LMG 13021T (89.2 %), Cesiribacter andamanensis AMV16T (89.1 %) and Marivirga tractuosa DSM 4126T (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10T should be classified as a novel species of a new genus in the family Flammeovirgaceae , for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10T ( = CCTCC AB 208222T = KCTC 23983T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 562-569 ◽  
Author(s):  
Hong Cheng ◽  
Shun Zhang ◽  
Ying-Yi Huo ◽  
Xia-Wei Jiang ◽  
Xin-Qi Zhang ◽  
...  

A taxonomic study was carried out on strain YN3T, which was isolated from a seaweed sample taken from the coast of Weihai, China. The bacterium was Gram-stain-negative, rod-shaped, and could grow at pH 5.0–10.0 and 4–32 °C in the presence of 0–9.0 % (w/v) NaCl. Strain YN3T was positive for the hydrolysis of polysaccharides, such as agar, starch and xylan. The predominant respiratory quinone was ubiquinone-8. The major fatty acids were C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1ω7c. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and two unidentified glycolipids. The genomic DNA G+C content was 49.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YN3T should be assigned to the genus Gilvimarinus . ‘Gilvimarinus agarilyticus’ KCTC 23325 and Gilvimarinus chinensis QM42T had the closest phylogenetic relationship to strain YN3T, and showed 97.9 % and 95.8 % sequence similarities, respectively. On the basis of phenotypic, chemotaxonomic and genotypic data and DNA–DNA hybridization studies, we propose that strain YN3T represents a novel species of the genus Gilvimarinus , for which the name Gilvimarinus polysaccharolyticus sp. nov. is proposed. The type strain is YN3T ( = KCTC 32438T = JCM 19198T). An emended description of the genus Gilvimarinus is also presented.


Author(s):  
Antonio Castellano-Hinojosa ◽  
David Correa-Galeote ◽  
Martha-Helena Ramírez-Bahena ◽  
Germán Tortosa ◽  
Jesús González-López ◽  
...  

Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to ‘ A. deltaense ’ YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium . Whole genome average nucleotide identity and digital DNA–DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10–42 °C, pH 5.0–10.0 and with 0.0–0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium , for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).


Sign in / Sign up

Export Citation Format

Share Document