Azospira inquinata sp. nov., a nitrate-reducing bacterium of the family Rhodocyclaceae isolated from contaminated groundwater

Author(s):  
Madison C. Mikes ◽  
Tamara K. Martin ◽  
William M. Moe

Two novel Gram-stain-negative bacterial strains, Azo-3T and Azo-2, were isolated from a toluene-producing enrichment culture that originated from contaminated groundwater at a site in southeast Louisiana (USA). Cells are non-spore forming straight to curved rods with single polar flagella. Strains Azo-3T and Azo-2 are oxidase-positive, catalase-negative, use nitrate and nitrite as electron acceptors, and are able to fix nitrogen. Poly-β-hydroxybutyrate storage granules are produced. Dominant fatty acids when grown in R2A medium at 37 °C are C16:0, summed feature 3 (C16:1 ω7c and/or C15:0 iso 2OH), C17:0 cyclo and C18:1 ω7c. 16S rRNA gene sequence based phylogenetic analysis indicated that the strains cluster within the family Rhodocyclaceae , class Betaproteobacteria , most closely related to but distinct from type strains of the species Azospira oryzae (96.94% similarity) and Azospira restricta (95.10% similarity). Complete genome sequences determined for strains Azo-3T and Azo-2 revealed DNA G+C content of 62.70 mol%. Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA–DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strains Azo-3T and Azo-2 represent a novel species within the genus Azospira for which the name Azospira inquinata sp. nov. is proposed. The type strain of Azospira inquinata is Azo-3T (=NRRL B-65590T=DSM 112046T).

2020 ◽  
Vol 70 (11) ◽  
pp. 5918-5925 ◽  
Author(s):  
Hyun-Ju Noh ◽  
Seung Chul Shin ◽  
Yerin Park ◽  
Ahyoung Choi ◽  
Kiwoon Baek ◽  
...  

Two Gram-stain-negative, facultative anaerobic, chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 26568 and PAMC 26569T, were isolated from an Antarctic lichen. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains PAMC 26568 and PAMC 26569T belong to the family Acetobacteraceae and the most closely related species are Gluconacetobacter takamatsuzukensis (96.1 %), Gluconacetobacter tumulisoli (95.9 %) and Gluconacetobacter sacchari (95.7 %). Phylogenomic and genomic relatedness analyses showed that strains PAMC 26568 and PAMC 26569T are clearly distinguished from other genera in the family Acetobacteraceae by average nucleotide identity values (<72.8 %) and the genome-to-genome distance values (<22.5 %). Genomic analysis revealed that strains PAMC 26568 and PAMC 26569T do not contain genes involved in atmospheric nitrogen fixation and utilization of sole carbon compounds such as methane and methanol. Instead, strains PAMC 26568 and PAMC 26569T possess genes to utilize nitrate and nitrite and certain monosaccharides and disaccharides. The major fatty acids (>10 %) are summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 40.3–40.4 %), C18 : 1 2OH (22.7–23.7 %) and summed feature 2 (C14 : 0 3OH and/or C16 : 1 iso I; 12.0 % in PAMC 26568). The major respiratory quinone is Q-10. The genomic DNA G+C content of PAMC 26568 and PAMC 26569T is 64.6 %. Their distinct phylogenetic position and some physiological characteristics distinguish strains PAMC 26568 and PAMC 26569T from other genera in the family Acetobacteraceae supporting the proposal of Lichenicola gen. nov., with the type species Lichenicola cladoniae sp. nov. (type strain, PAMC 26569T=KCCM 43315T=JCM 33604T).


Author(s):  
Sára Szuróczki ◽  
Gorkhmaz Abbaszade ◽  
Dominika Buni ◽  
Károly Bóka ◽  
Peter Schumann ◽  
...  

Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23–33 °C in the presence of NaCl (1–2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae , for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.


2020 ◽  
Vol 70 (11) ◽  
pp. 5888-5898 ◽  
Author(s):  
María Paula Parada-Pinilla ◽  
Carolina Díaz-Cárdenas ◽  
Gina López ◽  
Jorge Iván Díaz-Riaño ◽  
Laura N. Gonzalez ◽  
...  

Two morphologically similar halophilic strains, named USBA 874 and USBA 960T, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960T were Q-8, Q-7 and Q-9. The major cellular fatty acids were C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are Salinisphaera species (similarity between 93.6 and 92.3 %), Abyssibacter profundi OUC007T (88.6 %) and Oceanococcus atlanticus 22II-S10r2T (88.7 %). In addition, the result of genome blast distance phylogeny analysis between strains USBA 874 and USBA 960T, Salinisphaera halophila (YIM 95161T), Salinisphaera shabanensis (E1L3AT), Salinisphaera orenii (MK-B5T) and Salinisphaera japonica (YTM-1T) was 18.5 %. Other in silico species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960T revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960T indicated that they formed a different lineage within the family Salinisphaeraceae . Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960T and USBA 874 represent a novel genus of the family Salinisphaeraceae and the name Salifodinibacter halophilus gen. nov., sp. nov. is proposed. The type strain is USBA 960T (CMPUJ U095T=CECT 30006T).


Author(s):  
Piyanat Charoenyingcharoen ◽  
Ji-Sun Kim ◽  
Gunjana Theeragool ◽  
Keun-Chul Lee ◽  
Pattaraporn Yukphan ◽  
...  

Two novel Gram-stain-negative, rod-shaped and non-motile bacterial strains, designated B5-SW-15T and C2-DW-16, were isolated from water collected in mangrove forests in Ranong Province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains B5-SW-15T and C2-DW-16 belonged to the genus Donghicola and were most closely related to Donghicola tyrosinivorans DSM 100212T (98.2 and 98.1 %, respectively) and Donghicola eburneus DSM 29127T (97.7 and 97.6 %, respectively). The average nucleotide identity and digital DNA–DNA hybridization values between strain B5-SW-15T, strain C2-DW-16 and related species were 95.8 and 71.6 % (to strain C2-DW-16), 76.8 and 21.3 % (to D. tyrosinivorans DSM 100212T) and 80.3 and 24.2 % (to D. eburneus DSM 29127T), respectively. The predominant cellular fatty acids (>5 %) were summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c), C16 : 0 and C12 : 1 3-OH. Ubiquinone Q-10 was the sole respiratory quinone. DNA G+C contents of the isolates were 61.0 and 61.2 mol% based on whole genome sequences. Strains B5-SW-15T and C2-DW-16 contained aminolipid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. On the basis of the results from phenotypic, chemotaxonomic and phylogenetic analyses, strains B5-SW-15T and C2-DW-16 constitute a novel species of the genus Donghicola in the family Rhodobacteraceae for which the name Donghicola mangrovi sp. nov. is proposed. The type strain is B5-SW-15T (=BCC 56522T=TBRC 9562T=KCTC 72743T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2753-2757 ◽  
Author(s):  
Tae-Su Kim ◽  
Ji-Hye Han ◽  
Yochan Joung ◽  
Seung Bum Kim

A novel Gram-stain-positive, non-spore-forming, pale yellow, irregular rod-shaped bacterium designated strain HWE2-01T was isolated from the surface-sterilized root of horseweed (Conyza canadensis). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HWE2-01T belongs to the family Microbacteriaceae and showed sequence similarity levels of 97.1–97.7 % with species of the genus Salinibacterium , 95.9–97.6 % with species of the genus Leifsonia and 97.1 % with Homoserinimonas aerilata . The highest sequence similarity (97.7 %) was with Salinibacterium xinjiangense 0543T. The genomic DNA G+C content of the novel strain was 68.1 mol%. The predominant cellular fatty acid of strain HWE2-01T was anteiso-C15 : 0, major menaquinones were MK-10, MK-9 and MK-11, and diagnostic polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The peptidoglycan of the novel strain contained 2,4-diaminobutyric acid, alanine, glycine and glutamic acid. The cell-wall sugars of strain HWE2-01T were galactose, mannose and rhamnose. The murein was of the acetyl type. Based on the results of the phenotypic and phylogenetic analysis, strain HWE2-01T differed in some respects from other members of the family Microbacteriaceae . Therefore, strain HWE2-01T is proposed to represent a novel species of a new genus in the family Microbacteriaceae with the name Conyzicola lurida gen. nov., sp. nov. (type strain = HWE2-01T = KCTC 29231T = JCM 19257T).


Author(s):  
Chandni Sidhu ◽  
Mohit Kumar Saini ◽  
Naga Radha Srinivas Tanuku ◽  
Anil Kumar Pinnaka

A novel Gram-stain-negative, curved rod-shaped, 0.5–0.7 µm wide and 3.0–10.0 µm long, non-motile bacterium, designated strain AK53T, was isolated from a 5 m depth water sample collected from the Bay of Bengal, Visakhapatnam, India. Colonies on marine agar were circular, small, dark orange, shiny, smooth, translucent, flat, with an entire margin. The major fatty acids included iso-C15 : 0, iso-C15 : 0 3OH, anteiso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3OH and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c and/or iso-C15 : 0-2OH). Polar lipids included phosphatidylethanolamine and five unidentified lipids. The DNA G+C content of the strain AK53T was found to be 40.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AK53T was closely related to Arenibacter latericius KMM 426T and Arenibacter certesii KMM3941T (pair-wise sequence similarity of 99.17 and 98.89 %, respectively), forming a distinct branch within the genus Arenibacter and clustering with A. latericius . Strain AK53T shared average nucleotide identity (ANIb, based on blast) of 78.07 and 77.44 % with A. latericius JCM 13508T and A. certesii JCM 13507T, respectively. Based on the observed phenotypic, chemotaxonomic characteristics and phylogenetic analysis, strain AK53T is described in this study as representing a novel species in the genus Arenibacter , for which the name Arenibacter amylolyticus sp. nov. is proposed. The type strain of Arenibacter amylolyticus is AK53T (=MTCC 12004T= JCM 19206T=KCTC 62553T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3050-3055 ◽  
Author(s):  
K. V. N. S. Lakshmi ◽  
Ch. Sasikala ◽  
E. V. V. Ramaprasad ◽  
Ch. V. Ramana

A reddish-brown bacterium, designated strain JA318T, was purified from a photoheterotrophic enrichment culture obtained from the rhizosphere soil of paddy. Cells of strain JA318T are spiral shaped, Gram-stain-negative and motile by means of amphitrichous flagella. Strain JA318T has no NaCl requirement for growth but can tolerate up to 1.5 % (w/v) NaCl. Internal photosynthetic membranes are present as lamellar stacks. Photoorganoheterotrophy is the only growth mode observed. Strain JA318T contains bacteriochlorophyll a, lycopene and rhodopin as major carotenoids. Thiamine, niacin and para-aminobenzoic acid (PABA) are required as growth factors. Major fatty acids are C18 : 1ω7c and C16 : 0. Ubiquinone-8 and rhodoquinone-8 are the observed quinones. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid are the major polar lipids in strain JA318T. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain JA318T clustered with species of the genus Rhodospirillum which belongs to the class Alphaproteobacteria . The highest sequence similarity of strain JA318T was found with Rhodospirillum sulfurexigens JA143T (99.9 %). The DNA–DNA reassociation values of strain JA318T with Rsp. sulfurexigens JA143T and Rhodospirillum photometricum DSM 122T were 52±2 % and 45±1 %, respectively. The genomic DNA G+C content of strain JA318T was 60.2 mol%. Based on the morphological, physiological, chemotaxonomical and molecular evidence, strain JA318T is significantly different from the type strains of species of the genus Rhodospirillum , of the family Rhodospirillaceae , and it is proposed that the strain be classified as a representative of a novel species for which the name Rhodospirillum oryzae sp. nov. is proposed. The type strain is JA318T ( = KCTC 5960T = NBRC 107573T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2819-2822 ◽  
Author(s):  
Qing Liu ◽  
Hongcan Liu ◽  
Jianli Zhang ◽  
Yuguang Zhou ◽  
Yuhua Xin

In this study, two psychrophilic bacterial strains were isolated from the China No. 1 glacier in Xinjiang, north-west China. Cells were Gram-positive rods. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains belonged to the genus Cryobacterium . Phylogenetic analysis showed that they clustered together and are most closely related to Cryobacterium luteum CGMCC 1.11210T, Cryobacterium flavum CGMCC 1.11215T, Cryobacterium psychrophilum CGMCC 1.4292T, Cryobacterium psychrotolerans CGMCC 1.5382T and Cryobacterium roopkundense CGMCC 1.10672T. The major cellular fatty acids of the novel strains were anteiso-C15 : 0, anteiso-C15 : 1 A, iso-C16 : 0 and iso-C15 : 0. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid in the cell membrane. The results of DNA–DNA hybridization and physiological tests allowed the genotypic and phenotypic differentiation of strains Hh34T and Hh28 from related species. However, their high DNA–DNA relatedness showed that they belong to the same novel species. Strain Hh34T ( = NBRC 107883T = CGMCC 1.11211T) was selected as the type strain to represent this novel species, for which the name Cryobacterium levicorallinum sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 863-868 ◽  
Author(s):  
Maribel Farfán ◽  
María Jesús Montes ◽  
Ana M. Marqués

The taxonomic position of Sphingobacterium antarcticum has been revised by means of 16S rRNA gene sequences, DNA–DNA hybridization, and phenotypic and chemotaxonomic characteristics. All data previously reported, as well as the results of the present phylogenetic analysis, support that Sphingobacterium antarcticum is clearly a member of the genus Pedobacter , also affiliated with the family Sphingobacteriaceae . We propose that Sphingobacterium antarcticum (corrig. Shivaji et al. 1992) should be reclassified as Pedobacter antarcticus comb. nov.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4115-4119 ◽  
Author(s):  
Parisa Zarparvar ◽  
Mohammad Ali Amoozegar ◽  
Mahdi Moshtaghi Nikou ◽  
Peter Schumann ◽  
Antonio Ventosa

A halophilic actinomycete, strain R4S8T, was isolated from soil of Inche-Broun hypersaline wetland in the north of Iran. The isolate grew aerobically at temperatures of 30–50 °C (optimum 40 °C), pH 6–10 (optimum pH 7.0) and in the presence of 1–15 % (w/v) NaCl (optimum 3–5 %). It formed short and straight to moderately flexuous aerial mycelium without motile elements. The cell wall of strain R4S8T contained meso-diaminopimelic acid as the diamino acid without any diagnostic sugars. The polar lipid pattern consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylmonomethylethanolamine two unknown phospholipids and one unknown aminophospholipid. It synthesized anteiso-C15 : 0 (44.8 %), iso-C15 : 0 (28.8 %) and iso-C14 : 0 (8.5 %) as major fatty acids. MK-6 was the predominant respiratory quinone. The G+C content of the genomic DNA was 52.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain R4S8T belongs to the family Thermoactinomycetaceae and showed the closest 16S rRNA gene sequence similarity with Desmospora activa IMMIB L-1269T (95.5 %) and Marininema mesophilum SCSIO 10219T (95.3 %). On the basis of phylogenetic analysis and phenotypic characteristics, strain R4S8T represents a novel species in a new genus within the family Thermoactinomycetaceae , for which the name Salinithrix halophila gen. nov., sp. nov. is proposed. The type strain of the type species is R4S8T ( = IBRC-M 10813T = CECT 8506T).


Sign in / Sign up

Export Citation Format

Share Document