scholarly journals Genomic surveillance of Escherichia coli and Klebsiella spp. in hospital sink drains and patients

2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Casper Jamin ◽  
Sien De Koster ◽  
Stefanie van Koeveringe ◽  
Dieter De Coninck ◽  
Klaas Mensaert ◽  
...  

Whole-genome sequencing (WGS) is becoming the de facto standard for bacterial typing and outbreak surveillance of resistant bacterial pathogens. However, interoperability for WGS of bacterial outbreaks is poorly understood. We hypothesized that harmonization of WGS for outbreak surveillance is achievable through the use of identical protocols for both data generation and data analysis. A set of 30 bacterial isolates, comprising of various species belonging to the Enterobacteriaceae family and Enterococcus genera, were selected and sequenced using the same protocol on the Illumina MiSeq platform in each individual centre. All generated sequencing data were analysed by one centre using BioNumerics (6.7.3) for (i) genotyping origin of replications and antimicrobial resistance genes, (ii) core-genome multi-locus sequence typing (cgMLST) for Escherichia coli and Klebsiella pneumoniae and whole-genome multi-locus sequencing typing (wgMLST) for all species. Additionally, a split k-mer analysis was performed to determine the number of SNPs between samples. A precision of 99.0% and an accuracy of 99.2% was achieved for genotyping. Based on cgMLST, a discrepant allele was called only in 2/27 and 3/15 comparisons between two genomes, for E. coli and K. pneumoniae, respectively. Based on wgMLST, the number of discrepant alleles ranged from 0 to 7 (average 1.6). For SNPs, this ranged from 0 to 11 SNPs (average 3.4). Furthermore, we demonstrate that using different de novo assemblers to analyse the same dataset introduces up to 150 SNPs, which surpasses most thresholds for bacterial outbreaks. This shows the importance of harmonization of data-processing surveillance of bacterial outbreaks. In summary, multi-centre WGS for bacterial surveillance is achievable, but only if protocols are harmonized.


2020 ◽  
Author(s):  
Miguel Pinto ◽  
Vítor Borges ◽  
Joana Isidro ◽  
João Carlos Rodrigues ◽  
Luís Vieira ◽  
...  

Neisseria gonorrhoeae , the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing N. gonorrhoeae infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform N. gonorrhoeae clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected N. gonorrhoeae genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available N. gonorrhoeae typing methods [i.e. MLST (multilocus sequence typing), NG-MAST ( N. gonorrhoeae multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of N. gonorrhoeae genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Nicol Janecko ◽  
Samuel J. Bloomfield ◽  
Raphaëlle Palau ◽  
Alison E. Mather

Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae . Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus , though multiple resistance genes were also identified in V. cholerae and V. vulnificus . This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.


2015 ◽  
Vol 53 (11) ◽  
pp. 3565-3573 ◽  
Author(s):  
Anne Holmes ◽  
Lesley Allison ◽  
Melissa Ward ◽  
Timothy J. Dallman ◽  
Richard Clark ◽  
...  

Detailed laboratory characterization ofEscherichia coliO157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance ofE. coliO157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred fiveE. coliO157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical”E. coliO157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance ofE. coliO157. A combination ofinsilicoanalyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determinestxsubtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades ofE. coliO157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships betweenE. coliO157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Lii-Tzu Wu ◽  
Xin-Xia Wu ◽  
Se-Chin Ke ◽  
Yi-Pei Lin ◽  
Ying-Chen Wu ◽  
...  

Introduction. Antimicrobial resistance associated with animal hosts is easily transmitted to humans either by direct contact with resistant organisms or by transferring resistance genes into human pathogens. Gap statement. There are limited studies on antimicrobial resistance genes and genetic elements of multidrug-resistant (MDR) Escherichia coli in veterinary hospitals in Taiwan. Aim. The aim of this study was to investigate antimicrobial resistance genes in multidrug-resistant Escherichia coli from animals. Methodology. Between January 2014 and August 2015, 95 multidrug-resistant Escherichia coli isolates were obtained from pigs (n=66), avians (n=18), and other animals (n=11) in a veterinary hospital in Taiwan. Susceptibility testing to 24 antimicrobial agents of 14 antimicrobial classes was performed. Antimicrobial resistance genes, integrons, and insertion sequences were analysed by polymerase chain reaction and nucleotide sequencing. Pulsed-field gel electrophoresis (PFGE), and multi-locus sequence typing were used to explore the clonal relatedness of the study isolates. Results. Different antimicrobial resistance genes found in these isolates were associated with resistance to β-lactams, tetracycline, phenicols, sulfonamides, and aminoglycosides. Fifty-five of 95 E. coli isolates (55/95, 57.9 %) were not susceptible to extended-spectrum cephalosporins, and bla CTX-M-55 (11/55, 20.0 %) and bla CMY-2 (40/55, 72.7 %) were the most common extended-spectrum β-lactamase (ESBL) and AmpC genes, respectively. Both bla CTX-M and bla CMY-2 were present on conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Plasmid-mediated FOX-3 β-lactamase-producing E. coli was first identified in Taiwan. Forty isolates (40/95, 42 %) with class 1 integrons showed seven resistance phenotypes. Genotyping of 95 E. coli isolates revealed 91 different XbaI pulsotypes and 52 different sequence types. PFGE analysis revealed no clonal outbreaks in our study isolates. Conclusion. This study showed a high diversity of antimicrobial resistance genes and genotypes among MDR E. coli isolated from diseased livestock in Taiwan. To our knowledge, this is the first report of plasmid-mediated ESBL in FOX-3 β-lactamase-producing E. coli isolates in Taiwan. MDR E. coli isolates from animal origins may contaminate the environment, resulting in public health concerns, indicating that MDR isolates from animals need to be continuously investigated.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Wenming Zhu ◽  
Adrian Lawsin ◽  
Rebecca L. Lindsey ◽  
Dhwani Batra ◽  
Kristen Knipe ◽  
...  

ABSTRACT Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Max Laurence Cummins ◽  
Piklu Roy Chowdhury ◽  
Marc Serge Marenda ◽  
Glenn Francis Browning ◽  
Steven Philip Djordjevic

ABSTRACT Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3′ end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli. The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023. IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae. SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3′ end of trmE. For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Aaron E. Lucas ◽  
Ryota Ito ◽  
Mustapha M. Mustapha ◽  
Christi L. McElheny ◽  
Roberta T. Mettus ◽  
...  

ABSTRACTFosfomycin maintains activity against mostEscherichia coliclinical isolates, but the growth ofE. colicolonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistantE. coliclinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649E. coliclinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion ofuhpTencoding hexose-6-phosphate antiporter in 4 of theE. coliinner colony mutants, while the remaining mutant contained a nonsense mutation inuhpA. The expression ofuhpTwas absent in the mutant strains withuhpTdeletion and was not inducible in the strain with theuhpAmutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistantE. coliclinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.


2015 ◽  
Vol 53 (11) ◽  
pp. 3530-3538 ◽  
Author(s):  
Mithila Ferdous ◽  
Kai Zhou ◽  
Alexander Mellmann ◽  
Stefano Morabito ◽  
Peter D. Croughs ◽  
...  

The ability ofEscherichia coliO157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably thestxgene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collectedstx-positive andstx-negative variants ofE. coliO157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of theeaegene but lack of thebfpAgene, thestx-negative isolates were considered atypical enteropathogenicE. coli(aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producingE. coli(STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF)stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF)stx-negative isolate clustered together with NSF STEC isolates. Therefore, thesestx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence ofstxgenes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.


Sign in / Sign up

Export Citation Format

Share Document