scholarly journals Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Max Laurence Cummins ◽  
Piklu Roy Chowdhury ◽  
Marc Serge Marenda ◽  
Glenn Francis Browning ◽  
Steven Philip Djordjevic

ABSTRACT Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3′ end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli. The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023. IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae. SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3′ end of trmE. For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.

2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. e00337-18 ◽  
Author(s):  
Louise Roer ◽  
Søren Overballe-Petersen ◽  
Frank Hansen ◽  
Kristian Schønning ◽  
Mikala Wang ◽  
...  

ABSTRACTEscherichia colisequence type 410 (ST410) has been reported worldwide as an extraintestinal pathogen associated with resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems. In the present study, we investigated national epidemiology of ST410E. coliisolates from Danish patients. Furthermore,E. coliST410 was investigated in a global context to provide further insight into the acquisition of the carbapenemase genesblaOXA-181andblaNDM-5of this successful lineage. From 127 whole-genome-sequenced isolates, we reconstructed an evolutionary framework ofE. coliST410 which portrays the antimicrobial-resistant clades B2/H24R, B3/H24Rx, and B4/H24RxC. The B2/H24R and B3/H24Rx clades emerged around 1987, concurrently with the C1/H30R and C2/H30Rx clades inE. coliST131. B3/H24Rx appears to have evolved by the acquisition of the extended-spectrum β-lactamase (ESBL)-encoding geneblaCTX-M-15and an IncFII plasmid, encoding IncFIA and IncFIB. Around 2003, the carbapenem-resistant clade B4/H24RxC emerged when ST410 acquired an IncX3 plasmid carrying ablaOXA-181carbapenemase gene. Around 2014, the clade B4/H24RxC acquired a second carbapenemase gene,blaNDM-5, on a conserved IncFII plasmid. From an epidemiological investigation of 49E. coliST410 isolates from Danish patients, we identified five possible regional outbreaks, of which one outbreak involved nine patients withblaOXA-181- andblaNDM-5-carrying B4/H24RxC isolates. The accumulated multidrug resistance inE. coliST410 over the past two decades, together with its proven potential of transmission between patients, poses a high risk in clinical settings, and thus,E. coliST410 should be considered a lineage with emerging “high-risk” clones, which should be monitored closely in the future.IMPORTANCEExtraintestinal pathogenicEscherichia coli(ExPEC) is the main cause of urinary tract infections and septicemia. Significant attention has been given to the ExPEC sequence type ST131, which has been categorized as a “high-risk” clone. High-risk clones are globally distributed clones associated with various antimicrobial resistance determinants, ease of transmission, persistence in hosts, and effective transmission between hosts. The high-risk clones have enhanced pathogenicity and cause severe and/or recurrent infections. We show that clones of theE. coliST410 lineage persist and/or cause recurrent infections in humans, including bloodstream infections. We found evidence of ST410 being a highly resistant globally distributed lineage, capable of patient-to-patient transmission causing hospital outbreaks. Our analysis suggests that the ST410 lineage should be classified with the potential to cause new high-risk clones. Thus, with the clonal expansion over the past decades and increased antimicrobial resistance to last-resort treatment options, ST410 needs to be monitored prospectively.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Wenming Zhu ◽  
Adrian Lawsin ◽  
Rebecca L. Lindsey ◽  
Dhwani Batra ◽  
Kristen Knipe ◽  
...  

ABSTRACT Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


2014 ◽  
Vol 58 (11) ◽  
pp. 6886-6895 ◽  
Author(s):  
Bente Olesen ◽  
Jakob Frimodt-Møller ◽  
Rikke Fleron Leihof ◽  
Carsten Struve ◽  
Brian Johnston ◽  
...  

ABSTRACTTo identify possible explanations for the recent global emergence ofEscherichia colisequence type (ST) 131 (ST131), we analyzed temporal trends within ST131 O25 for antimicrobial resistance, virulence genes, biofilm formation, and theH30 andH30-Rx subclones. For this, we surveyed the WHOE. coliandKlebsiellaCentre'sE. colicollection (1957 to 2011) for ST131 isolates, characterized them extensively, and assessed them for temporal trends. Overall, antimicrobial resistance increased temporally in prevalence and extent, due mainly to the recent appearance of theH30 (1997) andH30-Rx (2005) ST131 subclones. In contrast, neither the total virulence gene content nor the prevalence of biofilm production increased temporally, although non-H30 isolates increasingly qualified as extraintestinal pathogenicE. coli(ExPEC). Whereas virotype D occurred from 1968 forward, virotypes A and C occurred only after 2000 and 2002, respectively, in association with theH30andH30-Rx subclones, which were characterized by multidrug resistance (including extended-spectrum-beta-lactamase [ESBL] production:H30-Rx) and absence of biofilm production. Capsular antigen K100 occurred exclusively amongH30-Rx isolates (55% prevalence). Pulsotypes corresponded broadly with subclones and virotypes. Thus, ST131 should be regarded not as a unitary entity but as a group of distinctive subclones, with its increasing antimicrobial resistance having a strong clonal basis, i.e., the emergence of theH30 andH30-Rx ST131 subclones, rather than representing acquisition of resistance by diverse ST131 strains. Distinctive characteristics of theH30-Rx subclone—including specific virulence genes (iutA,afaanddra,kpsII), the K100 capsule, multidrug resistance, and ESBL production—possibly contributed to epidemiologic success, and some (e.g., K100) might serve as vaccine targets.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Dexi Bi ◽  
Jiayi Zheng ◽  
Ruting Xie ◽  
Yin Zhu ◽  
Rong Wei ◽  
...  

ABSTRACT AbaR-type genomic islands (AbaRs) are prevalent and associated with multiple antimicrobial resistance in Acinetobacter baumannii. AbaRs feature varied structural configurations involving different but closely related backbones with acquisition of diverse mobile genetic elements (MGEs) and antimicrobial resistance genes. This study aimed to understand the structural modulation patterns of AbaRs. A total of 442 intact AbaRs, including nonresistance but closely related islands, were mapped to backbones Tn6019, Tn6022, Tn6172/Tn6173, and AbGRI1-0 followed by alien sequence characterization. Genetic configurations were then examined and compared. The AbaRs fall into 53 genetic configurations, among which 26 were novel, including one Tn6019-type, nine Tn6022-type, three Tn6172/Tn6173-type, nine AbGRI1-type, and four new transposons that could not be mapped to the known backbones. The newly identified genetic configurations involved insertions of novel MGEs like ISAcsp2, ISAba42, ISAba17, and ISAba10, novel structural modulations driven by known MGEs such as ISCR2, Tn2006, and even another AbaR, and different backbone deletions. Recombination events in AbGRI1-type elements were also examined by identifying hybrid sequences from different backbones. Moreover, we found that the content and context features of AbaRs including the profiles of the MGEs driving the plasticity of these elements and the consequently acquired antimicrobial resistance genes, insertion sites, and clonal distribution displayed backbone-specific patterns. This study provides a comprehensive view of the genetic features of AbaRs. IMPORTANCE AbaR-type genomic islands (AbaRs) are well-known elements that can cause antimicrobial resistance in Acinetobacter baumannii. These elements contain diverse and complex genetic configurations involving different but related backbones with acquisition of diverse mobile genetic elements and antimicrobial resistance genes. Understanding their structural diversity is far from complete. In this study, we performed a large-scale comparative analysis of AbaRs, including nonresistance but closely related islands. Our findings offered a comprehensive and interesting view of their genetic features, which allowed us to correlate the structural modulation signatures, antimicrobial resistance patterns, insertion loci, as well as host clonal distribution of these elements to backbone types. This study provides insights into the evolution of these elements, explains the association between their antimicrobial resistance gene profiles and clonal distribution, and could facilitate establishment of a more proper nomenclature than the term “AbaR” that has been variously used.


mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Taylor K. S. Richter ◽  
Tracy H. Hazen ◽  
Diana Lam ◽  
Christian L. Coles ◽  
Jessica C. Seidman ◽  
...  

ABSTRACTThe stability of theEscherichia colipopulations in the human gastrointestinal tract is not fully appreciated, and represents a significant knowledge gap regarding gastrointestinal community structure, as well as resistance to incoming pathogenic bacterial species and antibiotic treatment. The current study examines the genomic content of 240Escherichia coliisolates from 30 children, aged 2 to 35 months old, in Tanzania. TheE. colistrains were isolated from three time points spanning a six-month time period, with and without antibiotic treatment. The resulting isolates were sequenced, and the genomes compared. The findings in this study highlight the transient nature ofE. colistrains in the gastrointestinal tract of these children, as during a six-month interval, no one individual contained phylogenomically related isolates at all three time points. While the majority of the isolates at any one time point were phylogenomically similar, most individuals did not contain phylogenomically similar isolates at more than two time points. Examination of global genome content, canonicalE. colivirulence factors, multilocus sequence type, serotype, and antimicrobial resistance genes identified diversity even among phylogenomically similar strains. There was no apparent increase in the antimicrobial resistance gene content after antibiotic treatment. The examination of theE. colifrom longitudinal samples from multiple children in Tanzania provides insight into the genomic diversity and population variability of residentE. coliwithin the rapidly changing environment of the gastrointestinal tract of these children.IMPORTANCEThis study increases the number of residentEscherichia coligenome sequences, and exploresE. colidiversity through longitudinal sampling. We investigate the genomes ofE. coliisolated from human gastrointestinal tracts as part of an antibiotic treatment program among rural Tanzanian children. Phylogenomics demonstrates that residentE. coliare diverse, even within a single host. Though theE. coliisolates of the gastrointestinal community tend to be phylogenomically similar at a given time, they differed across the interrogated time points, demonstrating the variability of the members of theE. colicommunity in these subjects. Exposure to antibiotic treatment did not have an apparent impact on theE. colicommunity or the presence of resistance and virulence genes withinE. coligenomes. The findings of this study highlight the variable nature of specific bacterial members of the human gastrointestinal tract.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACT The increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts on human medicine. Many of the multidrug-resistant (multiresistant) Enterobacteriaceae found in humans are community acquired, and some of them are possibly linked to food animals (i.e., livestock raised for meat and dairy products). In this study, we examined whether numerically dominant commensal Escherichia coli strains from humans (n = 63 isolates) and domestic animals (n = 174 isolates) in the same community and with matching phenotypic AMR patterns were clonally related or shared the same plasmids. We identified 25 multiresistant isolates (i.e., isolates resistant to more than one antimicrobial) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes, and plasmids carrying the AMR genes using conjugation, replicon typing, and whole-genome sequencing. All of the multiresistant E. coli isolates (from children and domestic animals) analyzed had at least 90 or more whole-genome SNP differences between one another, suggesting that none of the strains was recently transferred. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. We did not find evidence of the clonal spread of AMR in this community: instead, AMR genes were carried on diverse clones and plasmids. This presents a significant challenge for understanding the movement of AMR in a community. IMPORTANCE Even though Escherichia coli strains may share nearly identical phenotypic AMR profiles and AMR genes and overlap in space and time, the diversity of clones and plasmids challenges research that aims to identify sources of AMR. Horizontal gene transfer appears to play a more significant role than clonal expansion in the spread of AMR in this community.


2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Shiori Yamamoto ◽  
Wataru Kitagawa ◽  
Motoki Nakano ◽  
Hiroshi Asakura ◽  
Eriko Iwabuchi ◽  
...  

Escherichia coli is a common reservoir for antimicrobial resistance genes that can be easily transformed to possess multidrug resistance through plasmid transfer. To understand multidrug resistance plasmids, we report the plasmid sequences of four large plasmids carrying a number of genes related to antimicrobial resistance that were found in E. coli strains isolated from beef cattle.


2009 ◽  
Vol 53 (6) ◽  
pp. 2283-2288 ◽  
Author(s):  
Mathilde Lescat ◽  
Alexandra Calteau ◽  
Claire Hoede ◽  
Valérie Barbe ◽  
Marie Touchon ◽  
...  

ABSTRACT Escherichia coli clonal group A (CGA) commonly exhibits a distinctive multidrug antimicrobial resistance phenotype—i.e., resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and trimethoprim (ACSSuTTp)—and has accounted for up to 50% of trimethoprim-sulfamethoxazole-resistant E. coli urinary tract infections in some locales. Annotation of the whole-genome sequencing of UMN026, a reference CGA strain, clarified the genetic basis for this strain's ACSSuTTp antimicrobial resistance phenotype. Most of the responsible genes were clustered in a unique 23-kbp chromosomal region, designated the genomic resistance module (GRM), which occurred within a 105-kbp genomic island situated at the leuX tRNA. The GRM is characterized by numerous remnants of mobilization and rearrangement events suggesting multiple horizontal transfers. Additionally, comparative genomic analysis of the leuX tRNA genomic island in 14 sequenced E. coli genomes showed that this region is a hot spot of integration, with the presence/absence of specific subregions being uncorrelated with either the phylogenetic group or the pathotype. Our data illustrate the importance of whole-genome sequencing in the detection of genetic elements involved in antimicrobial resistance. Additionally, this is the first documentation of the bla TEM and dhfrVII genes in a chromosomal location in E. coli strains.


Sign in / Sign up

Export Citation Format

Share Document