scholarly journals The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall

Microbiology ◽  
2004 ◽  
Vol 150 (10) ◽  
pp. 3315-3326 ◽  
Author(s):  
A. F. J. Ram
2005 ◽  
Vol 58 (1) ◽  
pp. 305-319 ◽  
Author(s):  
Robbert A. Damveld ◽  
Mark Arentshorst ◽  
Angelique Franken ◽  
Patricia A. VanKuyk ◽  
Frans M. Klis ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Markus RM Fiedler ◽  
Annett Lorenz ◽  
Benjamin M Nitsche ◽  
Cees AMJJ van den Hondel ◽  
Arthur FJ Ram ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Raúl García ◽  
Enrique Bravo ◽  
Sonia Diez-Muñiz ◽  
Cesar Nombela ◽  
Jose M. Rodríguez-Peña ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161371 ◽  
Author(s):  
Yutaka Tanaka ◽  
Masato Sasaki ◽  
Fumie Ito ◽  
Toshio Aoyama ◽  
Michiyo Sato-Okamoto ◽  
...  

mBio ◽  
2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Lynn F. Wood ◽  
Dennis E. Ohman

ABSTRACTThePseudomonas aeruginosaextracytoplasmic functioning (ECF) sigma factor σ22is encoded byalgT/algUand is inhibited by anti-sigma factor MucA. σ22was originally discovered for its essential role in the expression of the exopolysaccharide alginate by mucoid strains associated with chronic pulmonary infection. However, σ22is now known to also have a large regulon associated with the response to cell wall stress. Our recent transcriptome analysis identified 293 open reading frames (ORFs) in the σ22stress stimulon that include genes for outer envelope biogenesis and remodeling, although most of the genes have undefined functions. To better understand the σ22-dependent stress response, mutants affected in 27 genes of the σ22stimulon were examined and expression was studied withlacZfusions. Mutants constructed in the 27 genes showed no major change in response to cell wall-acting antibiotics or growth at elevated temperatures nor in alginate production. The mutants were examined for their effects on the expression of the σ22-dependent promoter of the alginate biosynthetic operon (PalgD) as a measure of σ22derepression from MucA. By testing PalgDexpression under both planktonic and sessile growth conditions, 11 genes were found to play a role in the stress response that activates σ22. Some mutations caused an increase or a decrease in the response to cell wall stress. Interestingly, mutations in 7 of the 11 genes caused constitutive PalgDexpression under nonstressed conditions and thus showed that these genes are involved in maintaining envelope homeostasis. Mutations in PA0062 and PA1324 showed constitutive PalgDexpression during both the planktonic and the sessile modes of growth. However, the PA5178 mutation caused constitutive PalgDexpression only during planktonic growth. In contrast, mutations in PA2717, PA0567, PA3040, and PA0920 caused constitutive PalgDexpression only in the sessile/biofilm mode of growth. This provides evidence that the σ22stimulon for cell envelope homeostasis overlaps with biofilm control mechanisms.IMPORTANCEDuring chronic lung infections, such as in cystic fibrosis patients,Pseudomonas aeruginosaproduces the exopolysaccharide alginate and forms biofilms that shield the organisms from the immune response and increase resistance to antibiotics. Activation of alginate genes is under the control of an extracytoplasmic stress response system that releases an alternative sigma factor (σ22) in response to cell wall stress and then activates expression of a large regulon. In this study, a mutant analysis of 27 members of the regulon showed that 11 play a role in envelope homeostasis and affect the stress response system itself. Interestingly, some genes demonstrate effects only in either the planktonic (free-swimming) or the sessile (biofilm) mode of growth, which leads to persistence and antibiotic tolerance. The studies presented here provide an important initial step in dissecting the mechanisms that regulate a critical signal transduction pathway that impactsP. aeruginosapathogenesis.


2008 ◽  
Vol 8 (1) ◽  
pp. 186 ◽  
Author(s):  
Peter Sass ◽  
Andrea Jansen ◽  
Christiane Szekat ◽  
Vera Sass ◽  
Hans-Georg Sahl ◽  
...  

2012 ◽  
Vol 333 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Vanina Dengler ◽  
Patricia Stutzmann Meier ◽  
Ronald Heusser ◽  
Peter Kupferschmied ◽  
Judit Fazekas ◽  
...  

2005 ◽  
Vol 42 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Robbert A. Damveld ◽  
Patricia A. vanKuyk ◽  
Mark Arentshorst ◽  
Frans M. Klis ◽  
Cees A.M.J.J. van den Hondel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document