Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions

2018 ◽  
Vol 32 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Bongchul Kim
Desalination ◽  
2015 ◽  
Vol 365 ◽  
pp. 381-388 ◽  
Author(s):  
Masafumi Shibuya ◽  
Masahiro Yasukawa ◽  
Tomoki Takahashi ◽  
Taro Miyoshi ◽  
Mitsuru Higa ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S.-J. Im ◽  
S. Jeong ◽  
A. Jang

AbstractCurrently, desalination is limited by high energy consumption and high operational and maintenance costs. In this study, a new concept of a hollow fiber forward osmosis (HFFO)-based infinity desalination process with minor environmental impacts (free-energy intake and no pretreatment or brine discharge) is suggested. To evaluate the concept, an element-scale HFFO was conducted in both conventional FO and pressure-assisted FO modes, simulating a submerged HFFO operation. In the HFFO test, the impacts of several operating conditions on the performance of the HFFO were investigated to select the best case. Based on these results, the energy costs were calculated and compared with those of a hybrid FO–seawater reverse osmosis (SWRO) process. The HFFO showed a high dilution rate of the draw solution (up to approximately 400%), allowing the downstream SWRO process to operate at 25 bar with the same permeate volume production (recovery rate of 60%). Consequently, the HFFO-based infinity desalination process has an annual energy revenue of 183.83 million USD, compared with a stand-alone two-stage RO process based on a 100,000 m3/day plant.


Membranes ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 66 ◽  
Author(s):  
Victoria Sanahuja-Embuena ◽  
Gabriel Khensir ◽  
Mohamed Yusuf ◽  
Mads Friis Andersen ◽  
Xuan Tung Nguyen ◽  
...  

Although forward osmosis (FO) membranes have shown great promise for many applications, there are few studies attempting to create a systematization of the testing conditions at a pilot scale for FO membrane modules. To address this issue, hollow fiber forward osmosis (HFFO) membrane modules with different performances (water flux and solute rejection) have been investigated at different operating conditions. Various draw and feed flow rates, draw solute types and concentrations, transmembrane pressures, temperatures, and operation modes have been studied using two model feed solutions—deionized water and artificial seawater. The significance of the operational conditions in the FO process was attributed to a dominant role of concentration polarization (CP) effects, where the selected draw solute and draw concentration had the biggest impact on membrane performance due to internal CP. Additionally, the rejection of the HFFO membranes using three model solutes (caffeine, niacin, and urea) were determined under both FO and reverse osmosis (RO) conditions with the same process recovery. FO rejections had an increase of 2% for caffeine, 19% for niacin, and 740% for urea compared to the RO rejections. Overall, this is the first extensive study of commercially available inside-out HFFO membrane modules.


Desalination ◽  
2015 ◽  
Vol 362 ◽  
pp. 34-42 ◽  
Author(s):  
Masafumi Shibuya ◽  
Masahiro Yasukawa ◽  
Tomoki Takahashi ◽  
Taro Miyoshi ◽  
Mitsuru Higa ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


Sign in / Sign up

Export Citation Format

Share Document