scholarly journals Likelihood Estimation with Incomplete Array Variate Observations

2014 ◽  
Author(s):  
Deniz Akdemir

Missing data present an important challenge when dealing with high dimensional data arranged in the form of an array. In this paper, we propose methods for estimation of the parameters of array variate normal probability model from partially observed multi-way data. The methods developed here are useful for missing data imputation, estimation of mean and covariance parameters for multi-way data. A multi-way semi-parametric mixed effects model that allows separation of multi-way covariance effects is also defined and an efficient algorithm for estimation based on the spectral decompositions of the covariance parameters is recommended. We demonstrate our methods with simulations and with real life data involving the estimation of genotype and environment interaction effects on possibly correlated traits.

Attribute Reduction and missing data imputation have considerable influence in classification or other data mining task. New hybridization methodology like fuzzy rough set is more robust method to deal with imprecision and uncertainty for discrete as well as continuous data. Fuzzy rough attribute reduction with imputation (FRARI) algorithm has been proposed for attribute reduction with missing value imputation. So using FRARI algorithm complete reduce data set can be generated which has a great importance in different branches of artificial intelligence for data mining from databases. Efficiency and effectiveness of the proposed algorithm has been shown by experiment with real life data set.


2020 ◽  
Vol 4 (2) ◽  
pp. 680-694
Author(s):  
Dr. Sauta Saidu Abdulkadir ◽  
J. Jerry ◽  
T. G. Ieren

This paper proposes a Lomax-inverse exponential distribution as an improvement on the inverse exponential distribution in the form of Lomax-inverse Exponential using the Lomax generator (Lomax-G family) with two extra parameters to generalize any continuous distribution (CDF). The probability density function (PDF) and cumulative distribution function (CDF) of the Lomax-inverse exponential distribution are defined. Some basic properties of the new distribution are derived and extensively studied. The unknown parameters estimation of the distribution is done by method of maximum likelihood estimation. Three real-life datasets are used to assess the performance of the proposed probability distribution in comparison with some other generalizations of Lomax distribution. It is observed that Lomax-inverse exponential distribution is more robust than the competing distributions, inverse exponential and Lomax distributions. This is an evident that the Lomax generator is a good probability model.


Author(s):  
Aliya Syed Malik ◽  
S.P. Ahmad

In this paper, a new generalization of Log Logistic Distribution using Alpha Power Transformation is proposed. The new distribution is named Alpha Power Log-Logistic Distribution. A comprehensive account of some of its statistical properties are derived. The maximum likelihood estimation procedure is used to estimate the parameters. The importance and utility of the proposed model are proved empirically using two real life data sets.


2021 ◽  
Vol 9 (3) ◽  
pp. 748-768
Author(s):  
Mohamed Refaie

A new family of distributions called the Kumaraswamy Rayleigh family is defied and studied. Some of its relevant statistical properties are derived. Many new bivariate type G families using the of Farlie-Gumbel-Morgenstern, modified Farlie-Gumbel-Morgenstern copula, Clayton copula and Renyi’s entropy copula are derived. The method of the maximum likelihood estimation is used. Some special models based on log-logistic, exponential, Weibull, Rayleigh, Pareto type II and Burr type X, Lindley distributions are presented and studied. Three dimensional skewness and kurtosis plots are presented. A graphical assessment is performed. Two real life applications to illustrate the flexibility, potentiality and importance of the new family is proposed.


2020 ◽  
Vol 8 (2) ◽  
pp. 521-548
Author(s):  
Rafid Alshkaki

In this paper, a generalized modification of the Kumaraswamy distribution is proposed, and its distributional and characterizing properties are studied. This distribution is closed under scaling and exponentiation, and has some well-known distributions as special cases, such as the generalized uniform, triangular, beta, power function, Minimax, and some other Kumaraswamy related distributions. Moment generating function, Lorenz and Bonferroni curves, with its moments consisting of the mean, variance, moments about the origin, harmonic, incomplete, probability weighted, L, and trimmed L moments, are derived. The maximum likelihood estimation method is used for estimating its parameters and applied to six different simulated data sets of this distribution, in order to check the performance of the estimation method through the estimated parameters mean squares errors computed from the different simulated sample sizes. Finally, four real-life data sets are used to illustrate the usefulness and the flexibility of this distribution in application to real-life data.  


Author(s):  
Umar Kabir ◽  
Terna Godfrey IEREN

This article proposed a new distribution referred to as the transmuted Exponential Lomax distribution as an extension of the popular Lomax distribution in the form of Exponential Lomax by using the Quadratic rank transmutation map proposed and studied in earlier research. Using the transmutation map, we defined the probability density function (PDF) and cumulative distribution function (CDF) of the transmuted Exponential Lomax distribution. Some properties of the new distribution were extensively studied after derivation. The estimation of the distribution’s parameters was also done using the method of maximum likelihood estimation. The performance of the proposed probability distribution was checked in comparison with some other generalizations of Lomax distribution using three real-life data sets. The results obtained indicated that TELD performs better than the other distributions comprising power Lomax, Exponential-Lomax, and the Lomax distributions.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pelumi E. Oguntunde ◽  
Mundher A. Khaleel ◽  
Mohammed T. Ahmed ◽  
Adebowale O. Adejumo ◽  
Oluwole A. Odetunmibi

Developing new compound distributions which are more flexible than the existing distributions have become the new trend in distribution theory. In this present study, the Lomax distribution was extended using the Gompertz family of distribution, its resulting densities and statistical properties were carefully derived, and the method of maximum likelihood estimation was proposed in estimating the model parameters. A simulation study to assess the performance of the parameters of Gompertz Lomax distribution was provided and an application to real life data was provided to assess the potentials of the newly derived distribution. Excerpt from the analysis indicates that the Gompertz Lomax distribution performed better than the Beta Lomax distribution, Weibull Lomax distribution, and Kumaraswamy Lomax distribution.


Author(s):  
Oseghale O. I. ◽  
Akomolafe A. A. ◽  
Gayawan E.

This work is focused on the four parameters Exponentiated Cubic Transmuted Weibull distribution which mostly found its application in reliability analysis most especially for data that are non-monotone and Bi-modal. Structural properties such as moment, moment generating function, Quantile function, Renyi entropy, and order statistics were investigated. The maximum likelihood estimation technique was used to estimate the parameters of the distribution. Application to two real-life data sets shows the applicability of the distribution in modeling real data.


2020 ◽  
Vol 1 (2) ◽  
pp. 26-33
Author(s):  
Oyamakin S. Oluwafemi ◽  
Durojaiye M. Olalekan

Understanding the implication of Genotype-by-Environment (GXE) interaction structure is an important consideration in plant breeding programs. Traditional statistical analyses of yield trials provide little or no insight into the particular pattern or structure of the GXE interaction. In this study, efforts were made to solve these problems under different level of data occurrence. We employed the simulation process of Monte Carlo in generating since use of a real-life data may pose a serious difficulty. In this paper, we simulated for two data Types of Balance and Unbalance designs with different Levels of generations (3X3, 7X7, 10X10, and 3X7, 7X3, 7X10, 10X7 , , respectively). We therefore check the performance of GXE interaction on four different models (AMMI, FW, GGE and Mixed model), and also their stability and adaptability. The findings revealed that, when the assumption was maintained, AMMI outperformed Finlay-Wilkinson model, GGE Biplot model and Mixed model.


2020 ◽  
Vol 53 (2) ◽  
pp. 111-127
Author(s):  
C. Satheesh Kumar ◽  
Rosmi Jose

In this paper, we propose an alternative version to the Laplace distribution which we named as “alternative Laplace distribution (ALD)” and discuss some of its important properties. A location-scale extension of the ALD is considered and the maximum likelihood estimation procedures for estimating its parameters is described. Further, the distribution is fitted to certain real life data sets for illustrating the utility of the model. A simulation study is carried out to examine the performance of likelihood estimators of the parameters of the distribution.


Sign in / Sign up

Export Citation Format

Share Document