scholarly journals Difference in the impacts of the neonicotinoid dinotefuran administered through sugar syrup from that through pollen paste on a honeybee colony in the long-term field experiment

2015 ◽  
Author(s):  
Toshiro Yamada ◽  
Yasuhiro Yamada ◽  
Kazuko Yamada

SummaryWe have previously examined the impact of neonicotinoid pesticides, dinotefuran and clothianidin, on honeybee Apis mellifera colonies in long-term field experiments when they were simultaneously administered through both vehicles of sugar syrup and pollen paste (Yamada et al., 2012). The independent effect of a pesticide through two vehicles has not been studied in our previous work. In this paper, we investigated the independent impact of dinotefuran through each of the two vehicles. We confirmed that dinotefuran intake per bee until colony extinction due to administration through pollen paste (DF-TIPP) was roughly one-fifth as much as that through sugar syrup (DF-TISS). The intake was largely independent of dinotefuran concentration. We considered the possibility of DF-TIPP per bee as an indicator to assess the impact of persistent pesticide on a honeybee colony in a practical apiary.This work has replicated the finding that a honeybee colony has dwindled away to nothing after assuming an aspect of a colony collapse disorder (CCD) by administration of the neonicotinoids dinotefuran and clothianidin in our previous work, regardless of the vehicles. In addition, a failure in wintering was observed in case of administration of dinotefuran with the lowest concentration in this work even if the colony appeared vigorous before winter.We can infer that a CCD and a failure in wintering may have the same roots of chronic toxicity of neonicotinoids under conditions of low concentrations due to the persistency and high toxicity which are characteristic of them.

2015 ◽  
Author(s):  
Toshiro Yamada ◽  
Yasuhiro Yamada ◽  
Kazuko Yamada

Neonicotinoides are persistent and highly toxic pesticides that have become popular instead of organophosphates, being suspected to be a trigger of massive disappearance of bees that raises concern in the world. The evaluation of the long-term influence for a whole colony in the natural environment is, however, not established yet. In this paper, we conducted a long-term field experiment and found different impacts on honeybee colonies (Apis mellifera) in an apiary between the neonicotinoid dinotefuran and the organophosphate fenitrothion even though whose concentrations in sugar syrup provided for bees were adjusted to have nearly equal short-term effects on a honeybee based on the median lethal dose (LD50) as well as the insecticidal activity to exterminate stinkbugs. The colony with administration of dinotefran (dinotefuran colony) became extinct in 26 days, while the colony with administration of fenitrothion (fenitrothion colony) survived the administration for the same period. Furthermore, the fenitrothion colony succeeded to be alive for more than 293 days after administration, and also succeeded an overwintering, which indicates that colonies exposed to fenitrothion can recover after the exposure. Meanwhile, the dinotefuran colony became extinct even though the intake of dinotefuran was estimated to be comparable with that of fenitrothion in terms of the LD50 of a honeybee. Moreover, the colonies in our previous long-term experiments where dinotefuran with higher concentration were administered only for first few days (Yamada et al., 2012) became extinct in 104 days and 162 days, respectively. From these results, we speculate that colonies exposed to dinotefuran hardly recover from the damage because dinotefuran is much more persistent than fenitrothion and toxic foods stored in cells can affect a colony in a long period.


2020 ◽  
Author(s):  
Maria Regina Gmach ◽  
Martin A. Bolinder ◽  
Lorenzo Menichetti ◽  
Thomas Kätterer ◽  
Taru Sandén

<p>Soil organic matter decomposition affects the local and global C cycles. Decomposition is mainly affected by soil type and climatic conditions, for a given quality of organic material. This study tested the effect of land use and management, litter type, and climate on the early stage decomposition rate in long-term field experiments (LTEs) in Austria and Sweden. Standardized litter (Rooibos and Green tea) were used according to the Tea Bag Index (TBI) protocol (Keuskamp et al. 2013) for comparison of litter decomposition rate (k) and stabilization factor (S) in 11 sites in Austria (2015 and 2016) and 9 sites in Sweden (2016). The tea bags were buried at 8 cm depth and collected after ~90 days. Austrian LTEs focused on mineral nitrogen fertilization, mineral potassium fertilization, organic fertilization, tillage systems, and crop residues management. The LTEs evaluated in Sweden focused mainly on annual and perennial crops, mineral fertilization, and tillage systems. The impact of environmental parameters (air temperature and precipitation) was modeled to normalize the variance due to climatic effects at each site. The preliminary results show that in Austria TBI decomposition differed more between sites than between treatments at the same LTE. Minimum tillage treatment had significantly higher decomposition rates compared to reduced and conventional tillage. In Sweden, decomposition rate differed more between treatments than between sites. Fertilized plots showed higher stabilization than unfertilized, and maximum N fertilization had the highest k, while unfertilized had the lowest k. The effect of different tillage systems on k and S were variable across sites and treatments, although ploughing tended to result in the lowest k. The northernmost site resulted in the highest k value. Results indicated higher stabilization in perennial forage crops compared to annual crops. We also considered time-series decomposition for some sites with measurements at different time points by the TBI approach (retrieving tea bags after 15, 30, 60, and 90 days), and the use of Random Forest regressions to evaluate the importance of pedo-climatic variables on early stage decomposition.</p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9505
Author(s):  
Toshiro Yamada ◽  
Kazuko Yamada

Four long-term field experiments in mid-west Japan (Shika) made it clear that extinction of colonies exposed to neonicotinoid was much higher than for colonies exposed to organophosphates. The incidence of hive death for of organophosphate-exposed and control (pesticide-free) colonies was similar. We conducted a field experiment in Maui for 271 days using the same pesticides (dinotefuran: 0.2 ppm, clothianidin: 0.08 ppm, fenitrothion: 1 ppm) as used in Shika with the honeybee, Apis mellifera, colonies without mites. Numbers of adult bees, capped brood, mites and other hive parameters were accurately counted on photographs of combs and on the inside of the hives. All six neonicotinoid (dinotefuran & clothianidin)-exposed colonies failed during the experiment. One of three organophosphate (fenitrothion)-exposed colonies and one of the three control colonies also failed. The findings from Maui, where colonies displayed no mites, provides evidence from Shika, with mites, that neonicotinoids are more hazardous to honeybee colonies than organophosphates. The apparent longevity of honeybee colonies on Maui was estimated by numbers of adult bees and capped brood using a mathematical model previously proposed. Seasonal changes in longevity on Maui differ greatly from changes at Shika, the latter showing distinct seasonal variation. Longevity on Maui remains nearly constant throughout the year with wide variations. At Shika, it increases drastically in winter, by six- to ten fold more than the other seasons. Differences seem to depend on the existence of cold winters and the length of flowering seasons. In a perpetually hospitable environment, small changes in conditions can be sensitively reflected in apparent longevity. Examining wide variations in apparent longevity that are seemingly incoherent, we recognized several differences in apparent longevity between neonicotinoid-exposed and organophosphate-exposed colonies: The colony that failed in after organophosphate-exposure colony group exhibited the longest apparent longevity and the fewest number of newly capped brood, as also was the case in control colonies. Extended longevity when few brood are newly produced is reasonable to maintain the colony from a physiological point of view. Extension of apparent longevity is not seen in neonicotinoid-exposed colonies when the number of newly capped brood is fewer. This finding suggests that neonicotinoid pesticides may inhibit normal apian physiology.


2021 ◽  
Vol 126 ◽  
pp. 126263
Author(s):  
Mario Fontana ◽  
Gilles Bélanger ◽  
Juliane Hirte ◽  
Noura Ziadi ◽  
Saïd Elfouki ◽  
...  

2003 ◽  
Vol 49 (5) ◽  
pp. 465-483 ◽  
Author(s):  
Katalin Debreczeni ◽  
Martin Körschens

2018 ◽  
Vol 218 ◽  
pp. 158-170 ◽  
Author(s):  
Theresa Zicker ◽  
Sabine von Tucher ◽  
Mareike Kavka ◽  
Bettina Eichler-Löbermann

Sign in / Sign up

Export Citation Format

Share Document