scholarly journals Learning Immune-Defectives Graph through Group Tests

2015 ◽  
Author(s):  
Abhinav Ganesan ◽  
Sidharth Jaggi ◽  
Venkatesh Saligrama

This paper deals with an abstraction of a unified problem of drug discovery and pathogen identification. Here, the ``lead compounds'' are abstracted as inhibitors, pathogenic proteins as defectives, and the mixture of ``ineffective'' chemical compounds and non-pathogenic proteins as normal items. A defective could be immune to the presence of an inhibitor in a test. So, a test containing a defective is positive iff it does not contain its ``associated'' inhibitor. The goal of this paper is to identify the defectives, inhibitors, and their ``associations'' with high probability, or in other words, learn the Immune Defectives Graph (IDG). We propose a probabilistic non-adaptive pooling design, a probabilistic two-stage adaptive pooling design and decoding algorithms for learning the IDG. For the two-stage adaptive-pooling design, we show that the sample complexity of the number of tests required to guarantee recovery of the inhibitors, defectives and their associations with high probability, i.e., the upper bound, exceeds the proposed lower bound by a logarithmic multiplicative factor in the number of items. For the non-adaptive pooling design, in the large inhibitor regime, we show that the upper bound exceeds the proposed lower bound by a logarithmic multiplicative factor in the number of inhibitors.


2000 ◽  
Vol 32 (01) ◽  
pp. 244-255 ◽  
Author(s):  
V. Dumas ◽  
A. Simonian

We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.



2000 ◽  
Vol 32 (1) ◽  
pp. 244-255 ◽  
Author(s):  
V. Dumas ◽  
A. Simonian

We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.



Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 923 ◽  
Author(s):  
Naveed Ahmed Azam ◽  
Aleksandar Shurbevski ◽  
Hiroshi Nagamochi

Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bio-informatics and computational chemistry. For any two integers n≥1 and Δ≥0, we propose a method to count all non-isomorphic trees with n vertices, Δ self-loops, and no multi-edges based on dynamic programming. To achieve this goal, we count the number of non-isomorphic rooted trees with n vertices, Δ self-loops and no multi-edges, in O(n2(n+Δ(n+Δ·min{n,Δ}))) time and O(n2(Δ2+1)) space, since every tree can be uniquely viewed as a rooted tree by either regarding its unicentroid as the root, or in the case of bicentroid, by introducing a virtual vertex on the bicentroid and assuming the virtual vertex to be the root. By this result, we get a lower bound and an upper bound on the number of tree-like polymer topologies of chemical compounds with any “cycle rank”.



1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.



2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.



Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.



2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.



Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.



2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.



2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.



Sign in / Sign up

Export Citation Format

Share Document