scholarly journals Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage

2015 ◽  
Author(s):  
Mahul Chakraborty ◽  
James G. Baldwin-Brown ◽  
Anthony D. Long ◽  
J.J. Emerson

AbstractGenome assemblies that are accurate, complete, and contiguous are essential for identifying important structural and functional elements of genomes and for identifying genetic variation. Nevertheless, most recent genome assemblies remain incomplete and fragmented. While long molecule sequencing promises to deliver more complete genome assemblies with fewer gaps, concerns about error rates, low yields, stringent DNA requirements, and uncertainty about best practices may discourage many investigators from adopting this technology. Here, in conjunction with the platinum standard Drosophila melanogaster reference genome, we analyze recently published long molecule sequencing data to identify what governs completeness and contiguity of genome assemblies. We also present a hybrid meta-assembly approach that achieves remarkable assembly contiguity for both Drosophila and human assemblies with only modest long molecule sequencing coverage. Our results motivate a set of preliminary best practices for obtaining accurate and contiguous assemblies, a “missing manual” that guides key decisions in building high quality de novo genome assemblies, from DNA isolation to polishing the assembly.

Author(s):  
David Porubsky ◽  
◽  
Peter Ebert ◽  
Peter A. Audano ◽  
Mitchell R. Vollger ◽  
...  

AbstractHuman genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


2020 ◽  
Vol 10 (8) ◽  
pp. 2801-2809 ◽  
Author(s):  
Tingting Zhao ◽  
Zhongqu Duan ◽  
Georgi Z. Genchev ◽  
Hui Lu

Despite continuous updates of the human reference genome, there are still hundreds of unresolved gaps which account for about 5% of the total sequence length. Given the availability of whole genome de novo assemblies, especially those derived from long-read sequencing data, gap-closing sequences can be determined. By comparing 17 de novo long-read sequencing assemblies with the human reference genome, we identified a total of 1,125 gap-closing sequences for 132 (16.9% of 783) gaps and added up to 2.2 Mb novel sequences to the human reference genome. More than 90% of the non-redundant sequences could be verified by unmapped reads from the Simons Genome Diversity Project dataset. In addition, 15.6% of the non-reference sequences were found in at least one of four non-human primate genomes. We further demonstrated that the non-redundant sequences had high content of simple repeats and satellite sequences. Moreover, 43 (32.6%) of the 132 closed gaps were shown to be polymorphic; such sequences may play an important biological role and can be useful in the investigation of human genetic diversity.


Author(s):  
Sampath Perumal ◽  
Chu Shin Koh ◽  
Lingling Jin ◽  
Miles Buchwaldt ◽  
Erin Higgins ◽  
...  

AbstractHigh-quality nanopore genome assemblies were generated for two Brassica nigra genotypes (Ni100 and CN115125); a member of the agronomically important Brassica species. The N50 contig length for the two assemblies were 17.1 Mb (58 contigs) and 0.29 Mb (963 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short read assembly for Ni100 corroborated genome integrity and quantified sequence related error rates (0.002%). The contiguity and coverage allowed unprecedented access to low complexity regions of the genome. Pericentromeric regions and coincidence of hypo-methylation enabled localization of active centromeres and identified a novel centromere-associated ALE class I element which appears to have proliferated through relatively recent nested transposition events (<1 million years ago). Computational abstraction was used to define a post-triplication Brassica specific ancestral genome and to calculate the extensive rearrangements that define the genomic distance separating B. nigra from its diploid relatives.


GigaScience ◽  
2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Lisa K Johnson ◽  
Ruta Sahasrabudhe ◽  
James Anthony Gill ◽  
Jennifer L Roach ◽  
Lutz Froenicke ◽  
...  

Abstract Background Whole-genome sequencing data from wild-caught individuals of closely related North American killifish species (Fundulus xenicus, Fundulus catenatus, Fundulus nottii, and Fundulus olivaceus) were obtained using long-read Oxford Nanopore Technology (ONT) PromethION and short-read Illumina platforms. Findings Draft de novo reference genome assemblies were generated using a combination of long and short sequencing reads. For each species, the PromethION platform was used to generate 30–45× sequence coverage, and the Illumina platform was used to generate 50–160× sequence coverage. Illumina-only assemblies were fragmented with high numbers of contigs, while ONT-only assemblies were error prone with low BUSCO scores. The highest N50 values, ranging from 0.4 to 2.7 Mb, were from assemblies generated using a combination of short- and long-read data. BUSCO scores were consistently &gt;90% complete using the Eukaryota database. Conclusions High-quality genomes can be obtained from a combination of using short-read Illumina data to polish assemblies generated with long-read ONT data. Draft assemblies and raw sequencing data are available for public use. We encourage use and reuse of these data for assembly benchmarking and other analyses.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
David R. Greig ◽  
Claire Jenkins ◽  
Saheer E. Gharbia ◽  
Timothy J. Dallman

Compared to short-read sequencing data, long-read sequencing facilitates single contiguous de novo assemblies and characterization of the prophage region of the genome. Here, we describe our methodological approach to using Oxford Nanopore Technology (ONT) sequencing data to quantify genetic relatedness and to look for microevolutionary events in the core and accessory genomes to assess the within-outbreak variation of four genetically and epidemiologically linked isolates. Analysis of both Illumina and ONT sequencing data detected one SNP between the four sequences of the outbreak isolates. The variant calling procedure highlighted the importance of masking homologous sequences in the reference genome regardless of the sequencing technology used. Variant calling also highlighted the systemic errors in ONT base-calling and ambiguous mapping of Illumina reads that results in variations in the genetic distance when comparing one technology to the other. The prophage component of the outbreak strain was analysed, and nine of the 16 prophages showed some similarity to the prophage in the Sakai reference genome, including the stx2a-encoding phage. Prophage comparison between the outbreak isolates identified minor genome rearrangements in one of the isolates, including an inversion and a deletion event. The ability to characterize the accessory genome in this way is the first step to understanding the significance of these microevolutionary events and their impact on the evolutionary history, virulence and potentially the likely source and transmission of this zoonotic, foodborne pathogen.


2021 ◽  
Author(s):  
Anurag Priyam ◽  
Alicja Witwicka ◽  
Anindita Brahma ◽  
Eckart Stolle ◽  
Yannick Wurm

Long-molecule sequencing is now routinely applied to generate high-quality reference genome assemblies. However, datasets differ in repeat composition, heterozygosity, read lengths and error profiles. The assembly parameters that provide the best results could thus differ across datasets. By integrating four complementary and biologically meaningful metrics, we show that simple fine-tuning of assembly parameters can substantially improve the quality of long-read genome assemblies. In particular, modifying estimates of sequencing error rates improves some metrics more than two-fold. We provide a flexible software, CompareGenomeQualities, that automates comparisons of assembly qualities for researchers wanting a straightforward mechanism for choosing among multiple assemblies.


2020 ◽  
Author(s):  
Mohamed Awad ◽  
Xiangchao Gan

AbstractHigh-quality genome assembly has wide applications in genetics and medical studies. However, it is still very challenging to achieve gap-free chromosome-scale assemblies using current workflows for long-read platforms. Here we propose GALA (Gap-free long-read assembler), a chromosome-by-chromosome assembly method implemented through a multi-layer computer graph that identifies mis-assemblies within preliminary assemblies or chimeric raw reads and partitions the data into chromosome-scale linkage groups. The subsequent independent assembly of each linkage group generates a gap-free assembly free from the mis-assembly errors which usually hamper existing workflows. This flexible framework also allows us to integrate data from various technologies, such as Hi-C, genetic maps, a reference genome and even motif analyses, to generate gap-free chromosome-scale assemblies. We de novo assembled the C. elegans and A. thaliana genomes using combined Pacbio and Nanopore sequencing data from publicly available datasets. We also demonstrated the new method’s applicability with a gap-free assembly of a human genome with the help a reference genome. In addition, GALA showed promising performance for Pacbio high-fidelity long reads. Thus, our method enables straightforward assembly of genomes with multiple data sources and overcomes barriers that at present restrict the application of de novo genome assembly technology.


2020 ◽  
Author(s):  
Mikko Kivikoski ◽  
Pasi Rastas ◽  
Ari Löytynoja ◽  
Juha Merilä

AbstractThe utility of genome-wide sequencing data in biological research depends heavily on the quality of the reference genome. Although the reference genomes have improved, it is evident that the assemblies could still be refined, especially in non-model study organisms. Here, we describe an integrative approach to improve contiguity and haploidy of a reference genome assembly. With two novel features of Lep-Anchor software and a combination of dense linkage maps, overlap detection and bridging long reads we generated an improved assembly of the nine-spined stickleback (Pungitius pungitius) reference genome. We were able to remove a significant number of haplotypic contigs, detect more genetic variation and improve the contiguity of the genome, especially that of X chromosome. However, improved scaffolding cannot correct for mosaicism of erroneously assembled contigs, demonstrated by a de novo assembly of a 1.7 Mbp inversion. Qualitatively similar gains were obtained with the genome of three-spined stickleback (Gasterosteus aculeatus).


2019 ◽  
Author(s):  
Alex Di Genova ◽  
Elena Buena-Atienza ◽  
Stephan Ossowski ◽  
Marie-France Sagot

The continuous improvement of long-read sequencing technologies along with the development of ad-doc algorithms has launched a new de novo assembly era that promises high-quality genomes. However, it has proven difficult to use only long reads to generate accurate genome assemblies of large, repeat-rich human genomes. To date, most of the human genomes assembled from long error-prone reads add accurate short reads to further polish the consensus quality. Here, we report the development of a novel algorithm for hybrid assembly, WENGAN, and the de novo assembly of four human genomes using a combination of sequencing data generated on ONT PromethION, PacBio Sequel, Illumina and MGI technology. WENGAN implements efficient algorithms that exploit the sequence information of short and long reads to tackle assembly contiguity as well as consensus quality. The resulting genome assemblies have high contiguity (contig NG50:16.67-62.06 Mb), few assembly errors (contig NGA50:10.9-45.91 Mb), good consensus quality (QV:27.79-33.61), and high gene completeness (BUSCO complete: 94.6-95.1%), while consuming low computational resources (CPU hours:153-1027). In particular, the WENGAN assembly of the haploid CHM13 sample achieved a contig NG50 of 62.06 Mb (NGA50:45.91 Mb), which surpasses the contiguity of the current human reference genome (GRCh38 contig NG50:57.88 Mb). Providing highest quality at low computational cost, WENGAN is an important step towards the democratization of the de novo assembly of human genomes. The WENGAN assembler is available at https://github.com/adigenova/wengan


Author(s):  
Valentine Murigneux ◽  
Subash Kumar Rai ◽  
Agnelo Furtado ◽  
Timothy J.C. Bruxner ◽  
Wei Tian ◽  
...  

AbstractSequencing technologies have advanced to the point where it is possible to generate high accuracy, haplotype resolved, chromosome scale assemblies. Several long read sequencing technologies are available on the market and a growing number of algorithms have been developed over the last years to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology as well as the most appropriate software for assembly and polishing. For this reason, it is important to benchmark different approaches applied to the same sample. Here, we report a comparison of three long read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION) and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of PacBio and Nanopore reads. Results obtained from combining long read technologies or short read and long read technologies are also presented. The assemblies were compared for contiguity, accuracy and completeness as well as sequencing costs and DNA material requirements. Overall, the three long read technologies produced highly contiguous and complete genome assemblies of Macadamia jansenii. At the time of sequencing, the cost associated with each method was significantly different but continuous improvements in technologies have resulted in greater accuracy, increased throughput and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.


Sign in / Sign up

Export Citation Format

Share Document