scholarly journals High contiguity long read assembly of Brassica nigra allows localization of active centromeres and provides insights into the ancestral Brassica genome

Author(s):  
Sampath Perumal ◽  
Chu Shin Koh ◽  
Lingling Jin ◽  
Miles Buchwaldt ◽  
Erin Higgins ◽  
...  

AbstractHigh-quality nanopore genome assemblies were generated for two Brassica nigra genotypes (Ni100 and CN115125); a member of the agronomically important Brassica species. The N50 contig length for the two assemblies were 17.1 Mb (58 contigs) and 0.29 Mb (963 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short read assembly for Ni100 corroborated genome integrity and quantified sequence related error rates (0.002%). The contiguity and coverage allowed unprecedented access to low complexity regions of the genome. Pericentromeric regions and coincidence of hypo-methylation enabled localization of active centromeres and identified a novel centromere-associated ALE class I element which appears to have proliferated through relatively recent nested transposition events (<1 million years ago). Computational abstraction was used to define a post-triplication Brassica specific ancestral genome and to calculate the extensive rearrangements that define the genomic distance separating B. nigra from its diploid relatives.

2015 ◽  
Author(s):  
Mahul Chakraborty ◽  
James G. Baldwin-Brown ◽  
Anthony D. Long ◽  
J.J. Emerson

AbstractGenome assemblies that are accurate, complete, and contiguous are essential for identifying important structural and functional elements of genomes and for identifying genetic variation. Nevertheless, most recent genome assemblies remain incomplete and fragmented. While long molecule sequencing promises to deliver more complete genome assemblies with fewer gaps, concerns about error rates, low yields, stringent DNA requirements, and uncertainty about best practices may discourage many investigators from adopting this technology. Here, in conjunction with the platinum standard Drosophila melanogaster reference genome, we analyze recently published long molecule sequencing data to identify what governs completeness and contiguity of genome assemblies. We also present a hybrid meta-assembly approach that achieves remarkable assembly contiguity for both Drosophila and human assemblies with only modest long molecule sequencing coverage. Our results motivate a set of preliminary best practices for obtaining accurate and contiguous assemblies, a “missing manual” that guides key decisions in building high quality de novo genome assemblies, from DNA isolation to polishing the assembly.


Author(s):  
Mitchell J Sullivan ◽  
Nouri L Ben Zakour ◽  
Brian M Forde ◽  
Mitchell Stanton-Cook ◽  
Scott A Beatson

Contiguity is an interactive software for the visualization and manipulation of de novo genome assemblies. Contiguity creates and displays information on contig adjacency which is contextualized by the simultaneous display of a comparison between assembled contigs and reference sequence. Where scaffolders allow unambiguous connections between contigs to be resolved into a single scaffold, Contiguity allows the user to create all potential scaffolds in ambiguous regions of the genome. This enables the resolution of novel sequence or structural variants from the assembly. In addition, Contiguity provides a sequencing and assembly agnostic approach for the creation of contig adjacency graphs. To maximize the number of contig adjacencies determined, Contiguity combines information from read pair mappings, sequence overlap and De Bruijn graph exploration. We demonstrate how highly sensitive graphs can be achieved using this method. Contig adjacency graphs allow the user to visualize potential arrangements of contigs in unresolvable areas of the genome. By combining adjacency information with comparative genomics, Contiguity provides an intuitive approach for exploring and improving sequence assemblies. It is also useful in guiding manual closure of long read sequence assemblies. Contiguity is an open source application, implemented using Python and the Tkinter GUI package that can run on any Unix, OSX and Windows operating system. It has been designed and optimized for bacterial assemblies. Contiguity is available at http://mjsull.github.io/Contiguity .


Author(s):  
David Porubsky ◽  
◽  
Peter Ebert ◽  
Peter A. Audano ◽  
Mitchell R. Vollger ◽  
...  

AbstractHuman genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Vincent Somerville ◽  
Stefanie Lutz ◽  
Michael Schmid ◽  
Daniel Frei ◽  
Aline Moser ◽  
...  

Author(s):  
Arang Rhie ◽  
Brian P. Walenz ◽  
Sergey Koren ◽  
Adam M. Phillippy

AbstractRecent long-read assemblies often exceed the quality and completeness of available reference genomes, making validation challenging. Here we present Merqury, a novel tool for reference-free assembly evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and completeness. For trios, Merqury can also evaluate haplotype-specific accuracy, completeness, phase block continuity, and switch errors. Multiple visualizations, such as k-mer spectrum plots, can be generated for evaluation. We demonstrate on both human and plant genomes that Merqury is a fast and robust method for assembly validation.Availability of data and materialProject name: MerquryProject home page: https://github.com/marbl/merqury, https://github.com/marbl/merylArchived version: https://github.com/marbl/merqury/releases/tag/v1.0Operating system(s): Platform independentProgramming language: C++, Java, PerlOther requirements: gcc 4.8 or higher, java 1.6 or higherLicense: Public domain (see https://github.com/marbl/merqury/blob/master/README.license) Any restrictions to use by non-academics: No restrictions applied


2020 ◽  
Author(s):  
Kumar Paritosh ◽  
Akshay Kumar Pradhan ◽  
Deepak Pental

AbstractBrassica nigra (BB), also called black mustard, is grown as a condiment crop in India. B. nigra represents the B genome of U’s triangle and is one of the progenitor species of B. juncea (AABB), an important oilseed crop of the Indian subcontinent. We report here a highly contiguous genome assembly of B. nigra variety Sangam. The genome assembly has been carried out using Oxford Nanopore long-read sequencing and optical mapping. The resulting chromosome-scale assembly is a significant improvement over the previous draft assemblies of B. nigra; five out of the eight pseudochromosomes were represented by one scaffold each. The assembled genome was annotated for the transposons, centromeric repeats, and genes. The B. nigra genome was compared with the recently available contiguous genome assemblies of B. rapa (AA), B. oleracea (CC), and B. juncea (AABB). Based on the maximum homology among the three diploid genomes of U’s triangle, we propose a new nomenclature for B. nigra pseudochromosomes, taking the B. rapa pseudochromosome nomenclature as the reference.


2018 ◽  
Author(s):  
Michael J Roach ◽  
Simon Schmidt ◽  
Anthony R Borneman

AbstractRecent developments in third-gen long read sequencing and diploid-aware assemblers have resulted in the rapid release of numerous reference-quality assemblies for diploid genomes. However, assembling highly heterozygous genomes is still facing a major problem where the two haplotypes for a region are highly polymorphic and the synteny is not recognised during assembly. This causes issues with downstream analysis, for example variant discovery using the haploid assembly, or haplotype reconstruction using the diploid assembly. A new pipeline—Purge Haplotigs—was developed specifically for third-gen assemblies to identify and reassign the duplicate contigs. The pipeline takes a draft haplotype-fused assembly or a diploid assembly, and read alignments to produce an improved assembly. The pipeline was tested on a simulated dataset and on four recent diploid (phased) de novo assemblies from third-generation long-read sequencing. All assemblies after processing with Purge Haplotigs were less duplicated with minimal impact on genome completeness. The software is available at https://bitbucket.org/mroachawri/purge_haplotigs under a permissive MIT licence.


2018 ◽  
Author(s):  
Giulia Guidi ◽  
Marquita Ellis ◽  
Daniel Rokhsar ◽  
Katherine Yelick ◽  
Aydın Buluç

AbstractRecent advances in long-read sequencing enable the characterization of genome structure and its intra- and inter-species variation at a resolution that was previously impossible. Detecting overlaps between reads is integral to many long-read genomics pipelines, such as de novo genome assembly. While longer reads simplify genome assembly and improve the contiguity of the reconstruction, current long-read technologies come with high error rates. We present Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), a novel algorithm for computing overlaps and alignments via sparse matrix-matrix multiplication that balances the goals of recall and precision, performing well on both.We present a probabilistic model that demonstrates the feasibility of using short k-mers for detecting candidate overlaps. We then introduce a notion of reliable k-mers based on our probabilistic model. Combining reliable k-mers with our binning mechanism eliminates both the k-mer set explosion that would otherwise occur with highly erroneous reads and the spurious overlaps from k-mers originating in repetitive regions. Finally, we present a new method based on Chernoff bounds for separating true overlaps from false positives using a combination of alignment techniques and probabilistic modeling. Our methodologies aim at maximizing the balance between precision and recall. On both real and synthetic data, BELLA performs amongst the best in terms of F1 score, showing performance stability which is often missing for competitor software. BELLA’s F1 score is consistently within 1.7% of the top entry. Notably, we show improved de novo assembly results on synthetic data when coupling BELLA with the Miniasm assembler.


2019 ◽  
Author(s):  
Kishwar Shafin ◽  
Trevor Pesout ◽  
Ryan Lorig-Roach ◽  
Marina Haukness ◽  
Hugh E. Olsen ◽  
...  

AbstractPresent workflows for producing human genome assemblies from long-read technologies have cost and production time bottlenecks that prohibit efficient scaling to large cohorts. We demonstrate an optimized PromethION nanopore sequencing method for eleven human genomes. The sequencing, performed on one machine in nine days, achieved an average 63x coverage, 42 Kb read N50, 90% median read identity and 6.5x coverage in 100 Kb+ reads using just three flow cells per sample. To assemble these data we introduce new computational tools: Shasta - a de novo long read assembler, and MarginPolish & HELEN - a suite of nanopore assembly polishing algorithms. On a single commercial compute node Shasta can produce a complete human genome assembly in under six hours, and MarginPolish & HELEN can polish the result in just over a day, achieving 99.9% identity (QV30) for haploid samples from nanopore reads alone. We evaluate assembly performance for diploid, haploid and trio-binned human samples in terms of accuracy, cost, and time and demonstrate improvements relative to current state-of-the-art methods in all areas. We further show that addition of proximity ligation (Hi-C) sequencing yields near chromosome-level scaffolds for all eleven genomes.


Sign in / Sign up

Export Citation Format

Share Document