scholarly journals Systematic identification of cooperation between DNA binding proteins in 3D space

2016 ◽  
Author(s):  
Kai Zhang ◽  
Nan Li ◽  
Wei Wang

Cooperation between DNA-binding proteins (DBPs) such as transcription factors and chromatin remodeling enzymes plays a pivotal role in regulating gene expression and other biological processes. Such cooperation is often via interaction between DBPs that bind to loci located distal in the linear genome but close in the 3D space, referred as trans-cooperation. Due to the lack of 3D chromosomal structure, identification of DBP cooperation has been limited to those binding to neighbor regions in the linear genome, referred as cis-cooperation. Here we present the first study that integrates protein ChIP-seq and Hi-C data to systematically identify both cis- and trans-cooperation between DBPs. We developed a new network model that allows identification of cooperation between multiple DBPs and reveals cell type specific or independent regulations. Particularly interesting, we have retrieved many known and previously unknown trans-cooperation between DBPs in the chromosomal loops that may be a key factor for influencing 3D chromosomal structure. The software is available at http://wanglab.ucsd.edu/star/DBPnet/index.html.

1992 ◽  
Vol 12 (2) ◽  
pp. 576-588
Author(s):  
H Francis-Lang ◽  
M Price ◽  
M Polycarpou-Schwarz ◽  
R Di Lauro

A 420-bp fragment from the 5' end of the rat thyroperoxidase (TPO) gene was fused to a luciferase reporter and shown to direct cell-type-specific expression when transfected into rat thyroid FRTL-5 cells. Analysis of this DNA fragment revealed four regions of the promoter which interact with DNA-binding proteins present in FRTL-5 cells. Mutation of the DNA sequence within any of these regions reduced TPO promoter activity. The trans-acting factors binding to these sequences were compared with thyroid transcription factor 1 (TTF-1) and TTF-2, previously identified as transcriptional activators of another thyroid-specific gene, the thyroglobulin (Tg) gene. Purified TTF-1 binds to three regions of TPO which are protected by FRTL-5 proteins. Two of the binding sites overlap with recognition sites for other DNA-binding proteins. One TTF-1 site can also bind a protein (UFB) present in the nuclei of both expressing and nonexpressing cells. TTF-1 binding to the proximal region overlaps with that for a novel protein present in FRTL-5 cells which can also recognize the promoter-proximal region of Tg. Using a combination of techniques, the factor binding to the fourth TPO promoter site was shown to be TTF-2. We conclude, therefore, that the FRTL-5-specific expression of two thyroid restricted genes, encoding TPO and Tg, relies on a combination of the same trans-acting factors present in thyroid cells.


1992 ◽  
Vol 12 (2) ◽  
pp. 576-588 ◽  
Author(s):  
H Francis-Lang ◽  
M Price ◽  
M Polycarpou-Schwarz ◽  
R Di Lauro

A 420-bp fragment from the 5' end of the rat thyroperoxidase (TPO) gene was fused to a luciferase reporter and shown to direct cell-type-specific expression when transfected into rat thyroid FRTL-5 cells. Analysis of this DNA fragment revealed four regions of the promoter which interact with DNA-binding proteins present in FRTL-5 cells. Mutation of the DNA sequence within any of these regions reduced TPO promoter activity. The trans-acting factors binding to these sequences were compared with thyroid transcription factor 1 (TTF-1) and TTF-2, previously identified as transcriptional activators of another thyroid-specific gene, the thyroglobulin (Tg) gene. Purified TTF-1 binds to three regions of TPO which are protected by FRTL-5 proteins. Two of the binding sites overlap with recognition sites for other DNA-binding proteins. One TTF-1 site can also bind a protein (UFB) present in the nuclei of both expressing and nonexpressing cells. TTF-1 binding to the proximal region overlaps with that for a novel protein present in FRTL-5 cells which can also recognize the promoter-proximal region of Tg. Using a combination of techniques, the factor binding to the fourth TPO promoter site was shown to be TTF-2. We conclude, therefore, that the FRTL-5-specific expression of two thyroid restricted genes, encoding TPO and Tg, relies on a combination of the same trans-acting factors present in thyroid cells.


Author(s):  
Yanping Zhang ◽  
Pengcheng Chen ◽  
Ya Gao ◽  
Jianwei Ni ◽  
Xiaosheng Wang

Aim and Objective:: Given the rapidly increasing number of molecular biology data available, computational methods of low complexity are necessary to infer protein structure, function, and evolution. Method:: In the work, we proposed a novel mthod, FermatS, which based on the global position information and local position representation from the curve and normalized moments of inertia, respectively, to extract features information of protein sequences. Furthermore, we use the generated features by FermatS method to analyze the similarity/dissimilarity of nine ND5 proteins and establish the prediction model of DNA-binding proteins based on logistic regression with 5-fold crossvalidation. Results:: In the similarity/dissimilarity analysis of nine ND5 proteins, the results are consistent with evolutionary theory. Moreover, this method can effectively predict the DNA-binding proteins in realistic situations. Conclusion:: The findings demonstrate that the proposed method is effective for comparing, recognizing and predicting protein sequences. The main code and datasets can download from https://github.com/GaoYa1122/FermatS.


2020 ◽  
Vol 15 ◽  
Author(s):  
Yi Zou ◽  
Hongjie Wu ◽  
Xiaoyi Guo ◽  
Li Peng ◽  
Yijie Ding ◽  
...  

Background: Detecting DNA-binding proetins (DBPs) based on biological and chemical methods is time consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from protein sequence. Secondly, multiple kernels are constructed via these sequence feature. Than, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is test on several benchmark datasets. Compared with other methods, MK-FSVM-SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.


Sign in / Sign up

Export Citation Format

Share Document