scholarly journals Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry

2016 ◽  
Author(s):  
Ben C. Collins ◽  
Christie L. Hunter ◽  
Yansheng Liu ◽  
Birgit Schilling ◽  
George Rosenberger ◽  
...  

AbstractQuantitative proteomics employing mass spectrometry has become an indispensable tool in basic and applied life science research. Methods based on data-dependent acquisition have proved extremely valuable for qualitative proteome analysis but historically have struggled to achieve reproducible quantitative data if large sample cohorts are comparatively analyzed. Targeted proteomics, most commonly implemented as selected reaction monitoring, has emerged as a powerful alternative and succeeded in providing a data independent approach for reproducible quantitative proteomics data but is limited in the number of proteins quantified. SWATH-MS is a recently introduced technique consisting of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, specificity) achieved in targeted proteomics but on the scale of thousands of proteins. While previous SWATH-MS studies have shown high intra-lab reproducibility, this has not been evaluated on an inter-lab basis. In this multi-laboratory evaluation study using data from 11 sites worldwide, we have demonstrated that using SWATH-MS we can consistently detect and quantify more than 4,000 proteins from HEK293 cells and that the quantitative protein data generated across laboratories is reproducible. Using synthetic peptide dilution series, we have shown that the sensitivity, dynamic range and reproducibility established with SWATH-MS methods are also uniformly achieved across labs. This study demonstrates that SWATH-MS is a reproducible and accurate technique that can be confidently deployed for large-scale protein quantification in life science research.

2010 ◽  
Vol 134 (5) ◽  
pp. 423-443 ◽  
Author(s):  
Jaroslav Pól ◽  
Martin Strohalm ◽  
Vladimír Havlíček ◽  
Michael Volný

Author(s):  
Yuqian Gao ◽  
Thomas L. Fillmore ◽  
Nathalie Munoz ◽  
Gayle J. Bentley ◽  
Christopher W. Johnson ◽  
...  

Targeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the speed offered by microflow LC-SRM. Recent advancements in mass spectrometry instrumentation significantly enhance the scan speed and sensitivity of LC-SRM, thereby creating opportunities for applying the high speed of microflow LC-SRM without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339 peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various carbon sources. The results from the two LC-SRM platforms are highly correlated. In addition, the response curve study of 248 peptides demonstrates that microflow LC-SRM has comparable sensitivity for the majority of detected peptides and better mass spectrometry signal and chromatography stability than nanoflow LC-SRM.


Sign in / Sign up

Export Citation Format

Share Document