scholarly journals A Self-Organizing Short-Term Dynamical Memory Network

2017 ◽  
Author(s):  
Callie Federer ◽  
Joel Zylberberg

AbstractWorking memory requires information about external stimuli to be represented in the brain even after those stimuli go away. This information is encoded in the activities of neurons, and neural activities change over timescales of tens of milliseconds. Information in working memory, however, is retained for tens of seconds, suggesting the question of how time-varying neural activities maintain stable representations. Prior work shows that, if the neural dynamics are in the ‘null space’ of the representation - so that changes to neural activity do not affect the downstream read-out of stimulus information - then information can be retained for periods much longer than the time-scale of individual-neuronal activities. The prior work, however, requires precisely constructed synaptic connectivity matrices, without explaining how this would arise in a biological neural network. To identify mechanisms through which biological networks can self-organize to learn memory function, we derived biologically plausible synaptic plasticity rules that dynamically modify the connectivity matrix to enable information storing. Networks implementing this plasticity rule can successfully learn to form memory representations even if only 10% of the synapses are plastic, they are robust to synaptic noise, and they can represent information about multiple stimuli.

2020 ◽  
Vol 117 (39) ◽  
pp. 24590-24598
Author(s):  
Freek van Ede ◽  
Alexander G. Board ◽  
Anna C. Nobre

Adaptive behavior relies on the selection of relevant sensory information from both the external environment and internal memory representations. In understanding external selection, a classic distinction is made between voluntary (goal-directed) and involuntary (stimulus-driven) guidance of attention. We have developed a task—the anti-retrocue task—to separate and examine voluntary and involuntary guidance of attention to internal representations in visual working memory. We show that both voluntary and involuntary factors influence memory performance but do so in distinct ways. Moreover, by tracking gaze biases linked to attentional focusing in memory, we provide direct evidence for an involuntary “retro-capture” effect whereby external stimuli involuntarily trigger the selection of feature-matching internal representations. We show that stimulus-driven and goal-directed influences compete for selection in memory, and that the balance of this competition—as reflected in oculomotor signatures of internal attention—predicts the quality of ensuing memory-guided behavior. Thus, goal-directed and stimulus-driven factors together determine the fate not only of perception, but also of internal representations in working memory.


2020 ◽  
Author(s):  
Megan Roussy ◽  
Rogelio Luna ◽  
Lyndon Duong ◽  
Benjamin Corrigan ◽  
Roberto A. Gulli ◽  
...  

SummaryThe primate lateral prefrontal cortex (LPFC) is considered fundamental for temporarily maintaining and manipulating mental representations that serve behavior, a cognitive function known as working memory1. Studies in non-human primates have shown that LPFC lesions impair working memory2 and that LPFC neuronal activity encodes working memory representations3. However, such studies have used simple displays and constrained gaze while subjects held information in working memory3, which put into question their ethological validity4,5. Currently, it remains unclear whether LPFC microcircuits can support working memory function during natural behavior. We tested macaque monkeys in a working memory navigation task in a life-like virtual environment while their gaze was unconstrained. We show that LPFC neuronal populations robustly encode working memory representations in these conditions. Furthermore, low doses of the NMDA receptor antagonist, ketamine, impaired working memory performance while sparing perceptual and motor skills. Ketamine decreased the firing of narrow spiking inhibitory interneurons and increased the firing of broad spiking cells reducing population decoding accuracy for remembered locations. Our results show that primate LPFC generates robust neural codes for working memory in naturalistic settings and that such codes rely upon a fine balance between the activation of excitatory and inhibitory neurons.


2020 ◽  
Author(s):  
Sophia Becker ◽  
Andreas Nold ◽  
Tatjana Tchumatchenko

AbstractNeural representations of working memory maintain information temporarily and make it accessible for processing. This is most feasible in active, spiking representations. State-of-the-art modeling frameworks, however, reproduce working memory representations that are either transient but non-active or active but non-transient. Here, we analyze a biologically motivated working memory model which shows that synaptic short-term plasticity and noise emerging from spiking networks can jointly produce a working memory representation that is both active and transient. We investigate the effect of a synaptic signaling mechanism whose dysregulation is related to schizophrenia and show how it controls transient working memory duration through presynaptic, astrocytic and postsynaptic elements. Our findings shed light on the computational capabilities of healthy working memory function and offer a possible mechanistic explanation for how molecular alterations observed in psychiatric diseases such as schizophrenia can lead to working memory impairments.


2007 ◽  
Author(s):  
Nachshon Meiran ◽  
Yoav Kessler ◽  
Oshrit Cohen-Kdoshai ◽  
Ravid Elenbogen

2015 ◽  
Vol 47 (9) ◽  
pp. 1089
Author(s):  
Bao ZHANG ◽  
Jiaying SHAO ◽  
Cenlou HU ◽  
Sai Huang

Author(s):  
Christian Merkel ◽  
Mandy Viktoria Bartsch ◽  
Mircea A Schoenfeld ◽  
Anne-Katrin Vellage ◽  
Notger G Müller ◽  
...  

Visual working memory (VWM) is an active representation enabling the manipulation of item information even in the absence of visual input. A common way to investigate VWM is to analyze the performance at later recall. This approach, however, leaves uncertainties about whether the variation of recall performance is attributable to item encoding and maintenance or to the testing of memorized information. Here, we record the contralateral delay activity (CDA) - an established electrophysiological measure of item storage and maintenance - in human subjects performing a delayed orientation precision estimation task. This allows us to link the fluctuation of recall precision directly to the process of item encoding and maintenance. We show that for two sequentially encoded orientation items, the CDA amplitude reflects the precision of orientation recall of both items, with higher precision being associated with a larger amplitude. Furthermore, we show that the CDA amplitude for each item varies independently from each other, suggesting that the precision of memory representations fluctuates independently.


2012 ◽  
Vol 23 (8) ◽  
pp. 887-898 ◽  
Author(s):  
Valerie M. Beck ◽  
Andrew Hollingworth ◽  
Steven J. Luck

2021 ◽  
pp. 1-16
Author(s):  
Qing Yu ◽  
Bradley R. Postle

Abstract Humans can construct rich subjective experience even when no information is available in the external world. Here, we investigated the neural representation of purely internally generated stimulus-like information during visual working memory. Participants performed delayed recall of oriented gratings embedded in noise with varying contrast during fMRI scanning. Their trialwise behavioral responses provided an estimate of their mental representation of the to-be-reported orientation. We used multivariate inverted encoding models to reconstruct the neural representations of orientation in reference to the response. We found that response orientation could be successfully reconstructed from activity in early visual cortex, even on 0% contrast trials when no orientation information was actually presented, suggesting the existence of a purely internally generated neural code in early visual cortex. In addition, cross-generalization and multidimensional scaling analyses demonstrated that information derived from internal sources was represented differently from typical working memory representations, which receive influences from both external and internal sources. Similar results were also observed in intraparietal sulcus, with slightly different cross-generalization patterns. These results suggest a potential mechanism for how externally driven and internally generated information is maintained in working memory.


Sign in / Sign up

Export Citation Format

Share Document