scholarly journals Sexual imprinting and speciation in two Peromyscus species

2017 ◽  
Author(s):  
E.K. Delaney ◽  
H.E. Hoekstra

AbstractSexual isolation, a reproductive barrier, can prevent interbreeding between diverging populations or species. Sexual isolation can have a clear genetic basis; however, it may also result from learned mate preferences that form via sexual imprinting. Here, we demonstrate that two sympatric species of mice—the white-footed mouse (Peromyscus leucopus) and its sister species, the cotton mouse (P. gossypinus)—hybridize only rarely in the wild despite co-occurrence in the same habitat and lack of any measurable intrinsic postzygotic barriers in laboratory crosses. We present evidence that strong conspecific mating preferences in each species result in significant sexual isolation. We find that these preferences are learned in at least one species: P. gossypinus sexually imprints on its parents, but in P. leucopus, additional factors influence mating preferences. Our study demonstrates that sexual imprinting contributes to reproductive isolation that reduces hybridization between otherwise interfertile species, supporting the role for learning in mammalian speciation.

2018 ◽  
Author(s):  
E.K. Delaney ◽  
H.E. Hoekstra

AbstractSpeciation is facilitated when traits subject to divergent selection also contribute to non-random mating—so-called ‘magic traits.’ Diet is a potential magic trait in animal populations because selection for divergence in consumed food may contribute to assortative mating and therefore sexual isolation. However, the mechanisms causing positive diet-based assortment are largely unknown. Here, using diet manipulations in a sexually imprinting species of mouse, Peromyscus gossypinus (the cotton mouse), we tested the hypothesis that sexual imprinting on a divergent diet could be a mechanism that generates rapid and significant sexual isolation. We provided breeding pairs with novel garlic- or orange-flavored water and assessed whether their offspring, exposed to these flavors in utero and in the nest before weaning, later preferred mates that consumed the same flavored water as their parents. While males showed no preference, females preferred males of their parental diet, which generated significant sexual isolation. Thus, our experiment demonstrates that sexual imprinting on dietary cues learned in utero and/or postnatally can facilitate reproductive isolation and potentially speciation.


Author(s):  
J. Albert C. Uy ◽  
Darren E. Irwin ◽  
Michael S. Webster

Behavioral changes, such as those involved in mating, foraging, and migration, can generate reproductive barriers between populations. Birds, in particular, are known for their great diversity in these behaviors, and so behavioral isolation is often proposed to be the major driver of speciation. Here, we review empirical evidence to evaluate the importance of behavioral isolation in the early stages of avian speciation. Experimentally measured mating preferences indicate that changes in mating behavior can result in premating barriers, with their strength depending on the extent of divergence in mating signals. Differences in migratory and foraging behavior also can play important roles in generating reproductive barriers in the early stages of speciation. However, because premating behavioral isolation is imperfect, extrinsic postzygotic barriers, in the form of selection against hybrids having intermediate phenotypes, also play an important role in avian diversification, especially in completing the speciation process.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carolina Ballén-Taborda ◽  
Ye Chu ◽  
Peggy Ozias-Akins ◽  
Patricia Timper ◽  
C. Corley Holbrook ◽  
...  

AbstractRoot-knot nematode is a very destructive pathogen, to which most peanut cultivars are highly susceptible. Strong resistance is present in the wild diploid peanut relatives. Previously, QTLs controlling nematode resistance were identified on chromosomes A02, A04 and A09 of Arachis stenosperma. Here, to study the inheritance of these resistance alleles within the genetic background of tetraploid peanut, an F2 population was developed from a cross between peanut and an induced allotetraploid that incorporated A. stenosperma, [Arachis batizocoi x A. stenosperma]4×. This population was genotyped using a SNP array and phenotyped for nematode resistance. QTL analysis allowed us to verify the major-effect QTL on chromosome A02 and a secondary QTL on A09, each contributing to a percentage reduction in nematode multiplication up to 98.2%. These were validated in selected F2:3 lines. The genome location of the large-effect QTL on A02 is rich in genes encoding TIR-NBS-LRR protein domains that are involved in plant defenses. We conclude that the strong resistance to RKN, derived from the diploid A. stenosperma, is transferrable and expressed in tetraploid peanut. Currently it is being used in breeding programs for introgressing a new source of nematode resistance and to widen the genetic basis of agronomically adapted peanut lines.


Ethology ◽  
2000 ◽  
Vol 106 (4) ◽  
pp. 349-363 ◽  
Author(s):  
Klaudia Witte ◽  
Ulrike Hirschler ◽  
Eberhard Curio

2015 ◽  
Vol 102 (11) ◽  
pp. 1870-1882 ◽  
Author(s):  
Melissa A. Johnson ◽  
Donald K. Price ◽  
Jonathan P. Price ◽  
Elizabeth A. Stacy

2019 ◽  
Vol 65 (3) ◽  
pp. 305-316 ◽  
Author(s):  
Martin Plath ◽  
Kai Liu ◽  
Diane Umutoni ◽  
Guilherme Gomes-Silva ◽  
Jie-Fei Wei ◽  
...  

Abstract While many mating preferences have a genetic basis, the question remains as to whether and how learning/experience can modify individual mate choice decisions. We used wild-caught (predator-experienced) and F1 laboratory-reared (predator-naïve) invasive Western mosquitofish Gambusia affinis from China to test whether mating preferences (assessed in a first mate choice test) would change under immediate predation threat. The same individuals were tested in a second mate choice test during which 1 of 3 types of animated predators was presented: 1) a co-occurring predator, 2) a co-evolved but not currently co-occurring predator, and 3) a non-piscivorous species as control. We compared preference scores derived from both mate choice tests to separate innate from experiential effects of predation. We also asked whether predator-induced changes in mating preferences would differ between sexes or depend on the choosing individual’s personality type and/or body size. Wild-caught fish altered their mate choice decisions most when exposed to the co-occurring predator whereas laboratory-reared individuals responded most to the co-evolved predator, suggesting that both innate mechanisms and learning effects are involved. This behavior likely reduces individuals’ risk of falling victim to predation by temporarily moving away from high-quality (i.e., conspicuous) mating partners. Accordingly, effects were stronger in bolder than shyer, large- compared with small-bodied, and female compared with male focal individuals, likely because those phenotypes face an increased predation risk overall. Our study adds to the growing body of literature appreciating the complexity of the mate choice process, where an array of intrinsic and extrinsic factors interacts during decision-making.


2009 ◽  
Vol 24 (4) ◽  
pp. 865-878 ◽  
Author(s):  
Celeste M. Espinedo ◽  
Caitlin R. Gabor ◽  
Andrea S. Aspbury

Genetica ◽  
2004 ◽  
Vol 120 (1-3) ◽  
pp. 273-284 ◽  
Author(s):  
Aya Takahashi ◽  
Chau-Ti Ting

Sign in / Sign up

Export Citation Format

Share Document