scholarly journals Neural entrainment determines the words we hear

2017 ◽  
Author(s):  
Anne Kösem ◽  
Hans Rutger Bosker ◽  
Atsuko Takashima ◽  
Antje Meyer ◽  
Ole Jensen ◽  
...  

ABSTRACTLow-frequency neural entrainment to rhythmic input has been hypothesized as a canonical mechanism that shapes sensory perception in time. Neural entrainment is deemed particularly relevant for speech analysis, as it would contribute to the extraction of discrete linguistic elements from continuous acoustic signals. Yet, its causal influence in speech perception has been difficult to establish. Here, we provide evidence that oscillations build temporal predictions about the duration of speech tokens that directly influence perception. Using magnetoencephalography (MEG), we studied neural dynamics during listening to sentences that changed in speech rate. We observed neural entrainment to preceding speech rhythms persisting for several cycles after the change in rate. The sustained entrainment was associated with changes in the perceived duration of the last word’s vowel, resulting in the perception of words with radically different meanings. These findings support oscillatory models of speech processing, suggesting that neural oscillations actively shape speech perception.

2019 ◽  
Vol 31 (8) ◽  
pp. 1205-1215 ◽  
Author(s):  
Victor J. Boucher ◽  
Annie C. Gilbert ◽  
Boutheina Jemel

Studies that use measures of cerebro-acoustic coherence have shown that theta oscillations (3–10 Hz) entrain to syllable-size modulations in the energy envelope of speech. This entrainment creates sensory windows in processing acoustic cues. Recent reports submit that delta oscillations (<3 Hz) can be entrained by nonsensory content units like phrases and serve to process meaning—though such views face fundamental problems. Other studies suggest that delta underlies a sensory chunking linked to the processing of sequential attributes of speech sounds. This chunking associated with the “focus of attention” is commonly manifested by the temporal grouping of items in sequence recall. Similar grouping in speech may entrain delta. We investigate this view by examining how low-frequency oscillations entrain to three types of stimuli (tones, nonsense syllables, and utterances) having similar timing, pitch, and energy contours. Entrainment was indexed by “intertrial phase coherence” in the EEGs of 18 listeners. The results show that theta oscillations at central sites entrain to syllable-size elements in speech and tones. However, delta oscillations at frontotemporal sites specifically entrain to temporal groups in both meaningful utterances and meaningless syllables, which indicates that delta may support but does not directly bear on a processing of content. The findings overall suggest that, although theta entrainment relates to a processing of acoustic attributes, delta entrainment links to a sensory chunking that relates to a processing of properties of articulated sounds. The results also show that measures of intertrial phase coherence can be better suited than cerebro-acoustic coherence in revealing delta entrainment.


2020 ◽  
Vol 32 (2) ◽  
pp. 226-240 ◽  
Author(s):  
Benedikt Zoefel ◽  
Isobella Allard ◽  
Megha Anil ◽  
Matthew H. Davis

Several recent studies have used transcranial alternating current stimulation (tACS) to demonstrate a causal role of neural oscillatory activity in speech processing. In particular, it has been shown that the ability to understand speech in a multi-speaker scenario or background noise depends on the timing of speech presentation relative to simultaneously applied tACS. However, it is possible that tACS did not change actual speech perception but rather auditory stream segregation. In this study, we tested whether the phase relation between tACS and the rhythm of degraded words, presented in silence, modulates word report accuracy. We found strong evidence for a tACS-induced modulation of speech perception, but only if the stimulation was applied bilaterally using ring electrodes (not for unilateral left hemisphere stimulation with square electrodes). These results were only obtained when data were analyzed using a statistical approach that was identified as optimal in a previous simulation study. The effect was driven by a phasic disruption of word report scores. Our results suggest a causal role of neural entrainment for speech perception and emphasize the importance of optimizing stimulation protocols and statistical approaches for brain stimulation research.


PLoS Biology ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. e3001142
Author(s):  
Sander van Bree ◽  
Ediz Sohoglu ◽  
Matthew H. Davis ◽  
Benedikt Zoefel

Rhythmic sensory or electrical stimulation will produce rhythmic brain responses. These rhythmic responses are often interpreted as endogenous neural oscillations aligned (or “entrained”) to the stimulus rhythm. However, stimulus-aligned brain responses can also be explained as a sequence of evoked responses, which only appear regular due to the rhythmicity of the stimulus, without necessarily involving underlying neural oscillations. To distinguish evoked responses from true oscillatory activity, we tested whether rhythmic stimulation produces oscillatory responses which continue after the end of the stimulus. Such sustained effects provide evidence for true involvement of neural oscillations. In Experiment 1, we found that rhythmic intelligible, but not unintelligible speech produces oscillatory responses in magnetoencephalography (MEG) which outlast the stimulus at parietal sensors. In Experiment 2, we found that transcranial alternating current stimulation (tACS) leads to rhythmic fluctuations in speech perception outcomes after the end of electrical stimulation. We further report that the phase relation between electroencephalography (EEG) responses and rhythmic intelligible speech can predict the tACS phase that leads to most accurate speech perception. Together, we provide fundamental results for several lines of research—including neural entrainment and tACS—and reveal endogenous neural oscillations as a key underlying principle for speech perception.


2019 ◽  
Author(s):  
Jacques Pesnot Lerousseau ◽  
Agnès Trébuchon ◽  
Benjamin Morillon ◽  
Daniele Schön

AbstractRhythmic stimulation, either sensory or electrical, aiming at entraining oscillatory activity to reveal or optimize brain functions, relies on a critically untested hypothesis: it should produce a persistent effect, outlasting the stimulus duration. We tested this assumption by studying cortical neural oscillations during and after presentation of rhythmic auditory stimuli. Using intracranial and surface recordings in humans, we reveal consistent neural response properties throughout the cortex, with persistent entrainment being selective to high-gamma oscillations. Critically, during passive perception, neural oscillations do not outlast low-frequency acoustic dynamics. We further show that our data are well-captured by a model of damped harmonic oscillator and can be classified into three classes of neural dynamics, with distinct damping properties and eigenfrequencies. This model thus provides a mechanistic and quantitative explanation of the frequency selectivity of persistent neural entrainment in the human cortex.Highlights- Neural oscillatory activity does not outlast low-frequency (2.5 Hz) acoustic dynamics during passive perception.- High-gamma activity is entrained by periodic auditory stimuli, with persistent activity up to 10 cycles after stimulus offset.- This frequency following response (FFR) is present throughout the cortex, up to inferior frontal and motor regions.- The frequency selective nature of neural entrainment is well-captured by a model of damped harmonic oscillator.


2020 ◽  
Vol 123 (3) ◽  
pp. 1063-1071
Author(s):  
Indiana Wollman ◽  
Pablo Arias ◽  
Jean-Julien Aucouturier ◽  
Benjamin Morillon

During auditory perception, neural oscillations are known to entrain to acoustic dynamics but their role in the processing of auditory information remains unclear. As a complex temporal structure that can be parameterized acoustically, music is particularly suited to address this issue. In a combined behavioral and EEG experiment in human participants, we investigated the relative contribution of temporal (acoustic dynamics) and nontemporal (melodic spectral complexity) dimensions of stimulation on neural entrainment, a stimulus-brain coupling phenomenon operationally defined here as the temporal coherence between acoustical and neural dynamics. We first highlight that low-frequency neural oscillations robustly entrain to complex acoustic temporal modulations, which underscores the fine-grained nature of this coupling mechanism. We also reveal that enhancing melodic spectral complexity, in terms of pitch, harmony, and pitch variation, increases neural entrainment. Importantly, this manipulation enhances activity in the theta (5 Hz) range, a frequency-selective effect independent of the note rate of the melodies, which may reflect internal temporal constraints of the neural processes involved. Moreover, while both emotional arousal ratings and neural entrainment were positively modulated by spectral complexity, no direct relationship between arousal and neural entrainment was observed. Overall, these results indicate that neural entrainment to music is sensitive to the spectral content of auditory information and indexes an auditory level of processing that should be distinguished from higher-order emotional processing stages. NEW & NOTEWORTHY Low-frequency (<10 Hz) cortical neural oscillations are known to entrain to acoustic dynamics, the so-called neural entrainment phenomenon, but their functional implication in the processing of auditory information remains unclear. In a behavioral and EEG experiment capitalizing on parameterized musical textures, we disentangle the contribution of stimulus dynamics, melodic spectral complexity, and emotional judgments on neural entrainment and highlight their respective spatial and spectral neural signature.


2019 ◽  
Author(s):  
Y Guo ◽  
RJ Bufacchi ◽  
G Novembre ◽  
M Kilintari ◽  
M Moayedi ◽  
...  

AbstractNervous systems exploit regularities in the sensory environment to predict sensory input and adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows retaining temporal regularities of sensory information, a prerequisite for prediction. Entrainment has been extensively described at the frequencies of periodic inputs most commonly present in visual and auditory landscapes (e.g. >1 Hz). An open question is whether neural entrainment also occurs for regularities at much longer timescales. Here we exploited the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very slowly. We show that ultra-low frequency neural oscillations preserved a long-lasting trace of sensory information through neural entrainment to periodic thermo-nociceptive input as low as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic auditory input at the same ultra-low frequency did not entrain ultra-low frequency oscillations. These results demonstrate that a functionally-significant neural entrainment can occur at temporal scales far longer than those commonly explored. The non-supramodal nature of our results suggests that ultra-low frequency entrainment might be tuned to the temporal scale of the statistical regularities characteristic of different sensory modalities.


2019 ◽  
Author(s):  
Benedikt Zoefel ◽  
Isobella Allard ◽  
Megha Anil ◽  
Matthew H Davis

AbstractSeveral recent studies have used transcranial alternating stimulation (tACS) to demonstrate a causal role of neural oscillatory activity in speech processing. In particular, it has been shown that the ability to understand speech in a multi-speaker scenario or background noise depends on the timing of speech presentation relative to simultaneously applied tACS. However, it is possible that tACS did not change actual speech perception but rather auditory stream segregation. In this study, we tested whether the phase relation between tACS and the rhythm of degraded words, presented in silence, modulates word report accuracy. We found strong evidence for a tACS-induced modulation of speech perception, but only if the stimulation was applied bilaterally using ring electrodes (not for unilateral left hemisphere stimulation with square electrodes). These results were only obtained when data was analyzed using a statistical approach that was identified as optimal in a previous simulation study. The effect was driven by a phasic disruption of word report scores. Our results suggest a causal role of neural entrainment for speech perception and emphasize the importance of optimizing stimulation protocols and statistical approaches for brain stimulation research.


1968 ◽  
Vol 25 (7) ◽  
pp. 1441-1452 ◽  
Author(s):  
Joseph D. Richard

A series of tests were conducted to determine the effectiveness of pulsed low-frequency acoustic signals for attracting fishes. The acoustic signals were contrived to simulate the hydrodynamically generated disturbances normally associated with active predation. Underwater television was used to observe fish arrivals during both control and test periods. Demersal predatory fishes were successfully attracted although they habituated rapidly to the acoustic stimulus. Members of the families Serranidae, Lutjanidae, and Pomadasyidae were particularly well represented among the fishes attracted. Sharks were also attracted in considerable numbers. Herbivorous reef fishes, although common around the test site, were not attracted. Possible relationships between the test results and the hearing capabilities of fishes are discussed. It is concluded that acoustic attraction techniques have potential applications in certain existing commercial fisheries.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Vijaya Kumar Name ◽  
C. S. Vanaja

Background. The aim of this study was to investigate the individual effects of envelope enhancement and high-pass filtering (500 Hz) on word identification scores in quiet for individuals with Auditory Neuropathy. Method. Twelve individuals with Auditory Neuropathy (six males and six females) with ages ranging from 12 to 40 years participated in the study. Word identification was assessed using bi-syllabic words in each of three speech processing conditions: unprocessed, envelope-enhanced, and high-pass filtered. All signal processing was carried out using MATLAB-7. Results. Word identification scores showed a mean improvement of 18% with envelope enhanced versus unprocessed speech. No significant improvement was observed with high-pass filtered versus unprocessed speech. Conclusion. These results suggest that the compression/expansion signal processing strategy enhances speech identification scores—at least for mild and moderately impaired individuals with AN. In contrast, simple high-pass filtering (i.e., eliminating the low-frequency content of the signal) does not improve speech perception in quiet for individuals with Auditory Neuropathy.


2015 ◽  
Vol 113 (5) ◽  
pp. 1556-1563 ◽  
Author(s):  
Freek van Ede ◽  
Stan van Pelt ◽  
Pascal Fries ◽  
Eric Maris

Neural oscillations have emerged as one of the major electrophysiological phenomena investigated in cognitive and systems neuroscience. These oscillations are typically studied with regard to their amplitude, phase, and/or phase coupling. Here we demonstrate the existence of another property that is intrinsic to neural oscillations but has hitherto remained largely unexplored in cognitive and systems neuroscience. This pertains to the notion that these oscillations show reliable diversity in their phase-relations between neighboring recording sites (phase-relation diversity). In contrast to most previous work, we demonstrate that this diversity is restricted neither to low-frequency oscillations nor to periods outside of sensory stimulation. On the basis of magnetoencephalographic (MEG) recordings in humans, we show that this diversity is prominent not only for ongoing alpha oscillations (8–12 Hz) but also for gamma oscillations (50–70 Hz) that are induced by sustained visual stimulation. We further show that this diversity provides a dimension within electrophysiological data that, provided a sufficiently high signal-to-noise ratio, does not covary with changes in amplitude. These observations place phase-relation diversity on the map as a prominent and general property of neural oscillations that, moreover, can be studied with noninvasive methods in healthy human volunteers. This opens important new avenues for investigating how neural oscillations contribute to the neural implementation of cognition and behavior.


Sign in / Sign up

Export Citation Format

Share Document