scholarly journals The modulation of neural gain facilitates a transition between functional segregation and integration in the brain

2017 ◽  
Author(s):  
James M. Shine ◽  
Matthew J. Aburn ◽  
Michael Breakspear ◽  
Russell A. Poldrack

AbstractCognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain pushed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal ‘rich club’ regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
James M Shine ◽  
Matthew J Aburn ◽  
Michael Breakspear ◽  
Russell A Poldrack

Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal ‘rich club’ regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain.



2019 ◽  
Author(s):  
Mike Li ◽  
Yinuo Han ◽  
Matthew J. Aburn ◽  
Michael Breakspear ◽  
Russell A. Poldrack ◽  
...  

AbstractA key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system. In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain led to a ‘critical’ transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.Author summaryHigher brain function relies on a dynamic balance between functional integration and segregation. Previous work has shown that this balance is mediated in part by alterations in neural gain, which are thought to relate to projections from ascending neuromodulatory nuclei, such as the locus coeruleus. Here, we extend this work by demonstrating that the modulation of neural gain alters the information processing dynamics of the neural components of a biophysical neural model. Specifically, we find that low levels of neural gain are characterized by high Active Information Storage, whereas higher levels of neural gain are associated with an increase in inter-regional Transfer Entropy. Our results suggest that the modulation of neural gain via the ascending arousal system may fundamentally alter the information processing mode of the brain, which in turn has important implications for understanding the biophysical basis of cognition.



2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ni Shu ◽  
Yaou Liu ◽  
Yunyun Duan ◽  
Kuncheng Li

The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.



2017 ◽  
Author(s):  
Stewart Heitmann ◽  
Michael Breakspear

AbstractThe study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term “dynamic functional connectivity” implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional) connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability), and multistability. Each of these scenarios arise under different configurations of local dynamics and inter-system coupling: We show how they generate time series data with nonlinear and/or non-stationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear) stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity and flexibility. The code for simulating these dynamics is available in a freeware software platform, the “Brain Dynamics Toolbox”.



Author(s):  
Hayoung Song ◽  
Bo-yong Park ◽  
Hyunjin Park ◽  
Won Mok Shim

AbstractUnderstanding a story involves a constant interplay of the accumulation of narratives and its integration into a coherent structure. This study characterizes cognitive state dynamics during story comprehension and the corresponding network-level reconfiguration of the whole brain. We presented movie clips of temporally scrambled sequences, eliciting fluctuations in subjective feelings of understanding. An understanding occurred when processing events with high causal relations to previous events. Functional neuroimaging results showed that, during moments of understanding, the brain entered into a functionally integrated state with increased activation in the default mode network (DMN). Large-scale neural state transitions were synchronized across individuals who comprehended the same stories, with increasing occurrences of the DMN-dominant state. The time-resolved functional connectivities predicted changing cognitive states, and the predictive model was generalizable when tested on new stories. Taken together, these results suggest that the brain adaptively reconfigures its interactive states as we construct narratives to causally coherent structures.



2019 ◽  
Author(s):  
Lionel Barnett ◽  
Suresh D. Muthukumaraswamy ◽  
Robin L. Carhart-Harris ◽  
Anil K. Seth

AbstractNeuroimaging studies of the psychedelic state offer a unique window onto the neural basis of conscious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using source-localised, steady-state MEG recordings, we describe changes in functional connectivity following the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the (non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of functional connectivity between placebo and drug conditions. We observe a general decrease in directed functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain. These data support the view that the psychedelic state involves a breakdown in patterns of functional organisation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity is coupled with an increase in undirected functional connectivity, which we measure using correlation and coherence. This surprising opposite movement of directed and undirected measures is of more general interest for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.



2017 ◽  
Author(s):  
Tengda Zhao ◽  
Virendra Mishra ◽  
Tina Jeon ◽  
Minhui Ouyang ◽  
Qinmu Peng ◽  
...  

AbstractDuring the 3rd trimester, large-scale of neural circuits are formed in the human brain, resulting in the adult-like brain networks at birth. However, how the brain circuits develop into a highly efficient and segregated connectome during this period is unknown. We hypothesized that faster increases of connectivity efficiency and strength at the brain hubs and rich-club are critical for emergence of an efficient and segregated brain connectome. Here, using high resolution diffusion MRI of 77 preterm-born and term-born neonates scanned at 31-42 postmenstrual weeks (PMW), we constructed the structural connectivity matrices and performed graph-theory-based analyses. We found faster increases of nodal efficiency mainly at the brain hubs, distributed in primary sensorimotor regions, superior-middle frontal and posterior cingulate gyrus during 31-42PMW. The rich-club and within-module connections were characterized by higher rates of edge strength increases. Edge strength of short-range connections increased faster than that of long-range connections. The nodal efficiencies of the hubs predicted individual postmenstrual ages more accurately than those of non-hubs. Collectively, these findings revealed regionally differentiated maturation in the baby brain structural connectome and more rapid increases of the hub and rich-club connections, which underlie network segregation and differentiated brain function emergence.



2018 ◽  
Vol 2 (2) ◽  
pp. 150-174 ◽  
Author(s):  
Stewart Heitmann ◽  
Michael Breakspear

The study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term “dynamic functional connectivity” implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional) connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability), and multistability. Each of these scenarios arises under different configurations of local dynamics and intersystem coupling: We show how they generate time series data with nonlinear and/or nonstationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear) stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity, and flexibility. The code for simulating these dynamics is available in a freeware software platform, the Brain Dynamics Toolbox.



Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.



Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.



Sign in / Sign up

Export Citation Format

Share Document