What Has Direct Cortical and Subcortical Electrostimulation Taught Us about Neurolinguistics?

Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.

Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


2021 ◽  
Vol 376 (1821) ◽  
pp. 20190765 ◽  
Author(s):  
Giovanni Pezzulo ◽  
Joshua LaPalme ◽  
Fallon Durant ◽  
Michael Levin

Nervous systems’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states—in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo . This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


Author(s):  
Maria A Di Biase ◽  
Andrew Zalesky ◽  
Suheyla Cetin-Karayumak ◽  
Yogesh Rathi ◽  
Jinglei Lv ◽  
...  

Abstract Introduction Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. Methods All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. Results Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = −3.56, P = .0004) and IL-12(p70) (t = −2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. Conclusions We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.


2000 ◽  
Vol 20 (11) ◽  
pp. 1529-1536 ◽  
Author(s):  
Eileen McCracken ◽  
V. Valeriani ◽  
C. Simpson ◽  
T. Jover ◽  
James McCulloch ◽  
...  

Lipid peroxidation and the cytotoxic by-product 4-hydroxynonenal (4-HNE) have been implicated in neuronal perikaryal damage. This study sought to determine whether 4-HNE was involved in white matter damage in vivo and in vitro. Immunohistochemical studies detected an increase in cellular and axonal 4-HNE within the ischemic region in the rat after a 24-hour period of permanent middle cerebral artery occlusion. Exogenous 4-HNE (3.2 nmol) was stereotaxically injected into the subcortical white matter of rats that were killed 24 hours later. Damaged axons detected by accumulation of β-amyloid precursor protein (β-APP) were observed transversing medially and laterally away from the injection site after intracerebral injection of 4-HNE. In contrast, in the vehicle-treated animals, axonal damage was restricted to an area immediately surrounding the injection site. Exogenous 4-HNE produced oligodendrocyte cell death in culture in a time-dependent and a concentration-dependent manner. After 4 hours, the highest concentration of 4-HNE (50 μmol/L) produced 100% oligodendrocyte cell death. Data indicate that lipid peroxidation and production of 4-HNE occurs in white matter after cerebral ischemia and the lipid peroxidation by-product 4-HNE is toxic to axons and oligodendrocytes.


2016 ◽  
Author(s):  
Philipp Kellmeyer ◽  
Magnus-Sebastian Vry

AbstractFiber tractography based on diffusion tensor imaging (DTI) has become an important research tool for investigating the anatomical connectivity between brain regions in vivo. Combining DTI with functional magnetic resonance imaging (fMRI) allows for the mapping of structural and functional architecture of large-scale networks for cognitive processing. This line of research has shown that ventral and dorsal fiber pathways subserve different aspects of bottom-up- and top-down processing in the human brain.Here, we investigate the feasibility and applicability of Euclidean distance as a simple geometric measure to differentiate ventral and dorsal long-range white matter fiber pathways tween parietal and inferior frontal cortical regions, employing a body of studies that used probabilistic tractography.We show that ventral pathways between parietal and inferior frontal cortex have on average a significantly longer Euclidean distance in 3D-coordinate space than dorsal pathways. We argue that Euclidean distance could provide a simple measure and potentially a boundary value to assess patterns of connectivity in fMRI studies. This would allow for a much broader assessment of general patterns of ventral and dorsal large-scale fiber connectivity for different cognitive operations in the large body of existing fMRI studies lacking additional DTI data.


2020 ◽  
Author(s):  
Pavel Filip ◽  
Michal Dufek ◽  
Silvia Mangia ◽  
Shalom Michaeli ◽  
Martin Bares ◽  
...  

Abstract Background: The research of primary progressive multiple sclerosis (PPMS) has not been able to capitalize on recent progresses in advanced MRI protocols searching for disease-specific microstructural changes. Methods: Conventional free precession T1 and T2, and rotating frame adiabatic T1ρ and T2ρ maps in combination with diffusion weighted parameters were acquired in 13 PPMS patients and 13 age and sex-matched controls.Results: T1ρ, a marker of crucial relevance for PPMS due to its sensitivity to neuronal loss, revealed large-scale changes in mesiotemporal structures, sensorimotor cortex and cingulate, in combination with diffuse alterations in the white matter and cerebellum. T2ρ, particularly sensitive to local tissue background gradients and thus indicator of iron accumulation, concurred with similar topography of damage, but of lower extent. Moreover, these adiabatic protocols completely dwarfed the outcomes of both conventional T1 and T2 maps and diffusion tensor/kurtosis approaches –methods previously implicated in the MRI research of PPMS.Conclusion: This study introduces adiabatic T1ρ and T2ρ as elegant markers confirming large-scale cortical grey matter, cerebellar and white matter alterations in PPMS invisible to other in vivo biomarkers.


2019 ◽  
Author(s):  
Leyla Tarhan ◽  
Talia Konkle

Humans observe a wide range of actions in their surroundings. How is the visual cortex organized to process this diverse input? Using functional neuroimaging, we measured brain responses while participants viewed short videos of everyday actions, then probed the structure in these responses using voxel-wise encoding modeling. Responses were well fit by feature spaces that capture the body parts involved in an action and the action’s targets (i.e. whether the action was directed at an object, another person, the actor, and space). Clustering analyses revealed five large-scale networks that summarized the voxel tuning: one related to social aspects of an action, and four related to the scale of the interaction envelope, ranging from fine-scale manipulations directed at objects, to large-scale whole-body movements directed at distant locations. We propose that these networks reveal the major representational joints in how actions are processed by visual regions of the brain.Significance StatementHow does the brain perceive other people’s actions? Prior work has established that much of the visual cortex is active when observing others’ actions. However, this activity reflects a wide range of processes, from identifying a movement’s direction to recognizing its social content. We investigated how these diverse processes are organized within the visual cortex. We found that five networks respond during action observation: one that is involved in processing actions’ social content, and four that are involved in processing agent-object interactions and the scale of the effect that these actions have on the world (its “interaction envelope”). Based on these findings, we propose that sociality and interaction envelope size are two of the major features that organize action perception in the visual cortex.


2021 ◽  
Author(s):  
Victor Nozais ◽  
Stephanie Forkel ◽  
Chris Foulon ◽  
Laurent Petit ◽  
Michel Thiebaut de Schotten

Abstract In recent years, the field of functional neuroimaging has moved from a pure localisationist approach of isolated functional brain regions to a more integrated view of those regions within functional networks. The methods used to investigate such networks, however, rely on local signals in grey matter and are limited in identifying anatomical circuitries supporting the interaction between brain regions. Mapping the brain circuits mediating the functional signal between brain regions would propel forward our understanding of the brain’s functional signatures and dysfunctions. We developed a novel method to unravel the relationship between brain circuits and functions: The Functionnectome. The Functionectome combines the functional signal from fMRI with the anatomy of white matter brain circuits to unlock and chart the first maps of functional white matter. To showcase the versatility of this new method, we provide the first functional white matter maps revealing the joint contribution of connected areas to motor, working memory, and language functions. The Functionnectome comes with an open source companion software and opens new avenues into studying functional networks by applying the method to already existing dataset and beyond task fMRI.


2018 ◽  
Author(s):  
Alexandre Dizeux ◽  
Marc Gesnik ◽  
Harry Ahnine ◽  
Kevin Blaize ◽  
Fabrice Arcizet ◽  
...  

ABSTRACTIn recent decades, neuroimaging has played an invaluable role in improving the fundamental understanding of the brain. At the macro scale, neuroimaging modalities such as MRI, EEG, and MEG, exploit a wide field of view to explore the brain as a global network of interacting regions. However, this comes at the price of either limited spatiotemporal resolution or limited sensitivity. At the micro scale, electrophysiology is used to explore the dynamic aspects of neuronal activity with a very high temporal resolution. However, this modality requires a statistical averaging of several tens of single task responses. A large-scale neuroimaging modality of sufficient spatial and temporal resolution and sensitivity to study brain region activation dynamically would open new territories of possibility in neuroscienceWe show that neurofunctional ultrasound imaging (fUS) is both able to assess brain activation during single cognitive tasks within superficial and deeper areas of the frontal cortex areas, and image the directional propagation of information within and between these regions. Equipped with an fUS device, two macaque rhesus monkeys were instructed before a stimulus appeared to rest (fixation) or to look towards (saccade) or away (antisaccade) from a stimulus. Our results identified an abrupt transient change in activity for all acquisitions in the supplementary eye field (SEF) when the animals were required to change a rule regarding the task cued by a stimulus. Simultaneous imaging in the anterior cingulate cortex and SEF revealed a time delay in the directional functional connectivity of 0.27 ± 0.07 s and 0.9 ± 0.2 s for animals S and Y, respectively. These results provide initial evidence that recording cerebral hemodynamics over large brain areas at a high spatiotemporal resolution and sensitivity with neurofunctional ultrasound can reveal instantaneous monitoring of endogenous brain signals and behavior.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


Sign in / Sign up

Export Citation Format

Share Document