scholarly journals Computational characteristics of the striatal dopamine system described by reinforcement learning with fast generalization

Author(s):  
Yoshihisa Fujita ◽  
Sho Yagishita ◽  
Haruo Kasai ◽  
Shin Ishii

AbstractGeneralization enables applying past experience to similar but nonidentical situations. Therefore, it may be essential for adaptive behaviors. Recent neurobiological observation indicates that the striatal dopamine system achieves generalization and subsequent discrimination by updating corticostriatal synaptic connections in differential response to reward and punishment. To analyze how the computational characteristics in this system affect behaviors, we proposed a novel reinforcement learning model with multilayer neural networks in which the synaptic weights of only the last layer are updated according to the prediction error. We set fixed connections between the input and hidden layers so as to maintain the similarity of inputs in the hidden-layer representation. This network enabled fast generalization, and thereby facilitated safe and efficient exploration in reinforcement learning tasks, compared to algorithms which do not show generalization. However, disturbance in the network induced aberrant valuation. In conclusion, the unique computation suggested by corticostriatal plasticity has the advantage of providing safe and quick adaptations to unknown environments, but on the other hand has the potential defect which can induce maladaptive behaviors like delusional symptoms of psychiatric disorders.Author summaryThe brain has an ability to generalize knowledge obtained from reward- and punishment-related learning. Animals that have been trained to associate a stimulus with subsequent reward or punishment respond not only to the same stimulus but also to resembling stimuli. How does generalization affect behaviors in situations where individuals are required to adapt to unknown environments? It may enable efficient learning and promote adaptive behaviors, but inappropriate generalization may disrupt behaviors by associating reward or punishment with irrelevant stimuli. The effect of generalization here should depend on computational characteristics of underlying biological basis in the brain, namely, the striatal dopamine system. In this research, we made a novel computational model based on the characteristics of the striatal dopamine system. Our model enabled fast generalization and showed its advantage of providing safe and quick adaptation to unknown environments. By contrast, disturbance of our model induced abnormal behaviors. The results suggested the advantage and the shortcoming of generalization by the striatal dopamine system.

2019 ◽  
Author(s):  
Jennifer R Sadler ◽  
Grace Elisabeth Shearrer ◽  
Nichollette Acosta ◽  
Kyle Stanley Burger

BACKGROUND: Dietary restraint represents an individual’s intent to limit their food intake and has been associated with impaired passive food reinforcement learning. However, the impact of dietary restraint on an active, response dependent learning is poorly understood. In this study, we tested the relationship between dietary restraint and food reinforcement learning using an active, instrumental conditioning task. METHODS: A sample of ninety adults completed a response-dependent instrumental conditioning task with reward and punishment using sweet and bitter tastes. Brain response via functional MRI was measured during the task. Participants also completed anthropometric measures, reward/motivation related questionnaires, and a working memory task. Dietary restraint was assessed via the Dutch Restrained Eating Scale. RESULTS: Two groups were selected from the sample: high restraint (n=29, score >2.5) and low restraint (n=30; score <1.85). High restraint was associated with significantly higher BMI (p=0.003) and lower N-back accuracy (p=0.045). The high restraint group also was marginally better at the instrumental conditioning task (p=0.066, r=0.37). High restraint was also associated with significantly greater brain response in the intracalcarine cortex (MNI: 15, -69, 12; k=35, pfwe< 0.05) to bitter taste, compared to neutral taste.CONCLUSIONS: High restraint was associated with improved performance on an instrumental task testing how individuals learn from reward and punishment. This may be mediated by greater brain response in the primary visual cortex, which has been associated with mental representation. Results suggest that dietary restraint does not impair response-dependent reinforcement learning.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210406 ◽  
Author(s):  
Laura Arroyo ◽  
Daniel Valent ◽  
Ricard Carreras ◽  
Raquel Peña ◽  
Josefa Sabrià ◽  
...  

2018 ◽  
Vol 83 (9) ◽  
pp. S157
Author(s):  
Christina Wierenga ◽  
Amanda Bischoff-Grethe ◽  
Emily Romero ◽  
Danika Peterson ◽  
Tiffany Brown ◽  
...  

Author(s):  
Marlaina R. Stocco ◽  
Ahmed A. El-Sherbeni ◽  
Bin Zhao ◽  
Maria Novalen ◽  
Rachel F. Tyndale

Abstract Rationale Cytochrome P450 2D (CYP2D) enzymes metabolize many addictive drugs, including methamphetamine. Variable CYP2D metabolism in the brain may alter CNS drug/metabolite concentrations, consequently affecting addiction liability and neuropsychiatric outcomes; components of these can be modeled by behavioral sensitization in rats. Methods To investigate the role of CYP2D in the brain in methamphetamine-induced behavioral sensitization, rats were pretreated centrally with a CYP2D irreversible inhibitor (or vehicle) 20 h prior to each of 7 daily methamphetamine (0.5 mg/kg subcutaneous) injections. In vivo brain microdialysis was used to assess brain drug and metabolite concentrations, and neurotransmitter release. Results CYP2D inhibitor (versus vehicle) pretreatment enhanced methamphetamine-induced stereotypy response sensitization. CYP2D inhibitor pretreatment increased brain methamphetamine concentrations and decreased the brain p-hydroxylation metabolic ratio. With microdialysis conducted on days 1 and 7, CYP2D inhibitor pretreatment exacerbated stereotypy sensitization and enhanced dopamine and serotonin release in the dorsal striatum. Day 1 brain methamphetamine and amphetamine concentrations correlated with dopamine and serotonin release, which in turn correlated with the stereotypy response slope across sessions (i.e., day 1 through day 7), used as a measure of sensitization. Conclusions CYP2D-mediated methamphetamine metabolism in the brain is sufficient to alter behavioral sensitization, brain drug concentrations, and striatal dopamine and serotonin release. Moreover, day 1 methamphetamine-induced neurotransmitter release may be an important predictor of subsequent behavioral sensitization. This suggests the novel contribution of CYP2D in the brain to methamphetamine-induced behavioral sensitization and suggests that the wide variation in human brain CYP2D6 may contribute to differential methamphetamine responses and chronic effects.


Science ◽  
2021 ◽  
Vol 372 (6537) ◽  
pp. eabf4740
Author(s):  
K. Schmack ◽  
M. Bosc ◽  
T. Ott ◽  
J. F. Sturgill ◽  
A. Kepecs

Hallucinations, a central symptom of psychotic disorders, are attributed to excessive dopamine in the brain. However, the neural circuit mechanisms by which dopamine produces hallucinations remain elusive, largely because hallucinations have been challenging to study in model organisms. We developed a task to quantify hallucination-like perception in mice. Hallucination-like percepts, defined as high-confidence false detections, increased after hallucination-related manipulations in mice and correlated with self-reported hallucinations in humans. Hallucination-like percepts were preceded by elevated striatal dopamine levels, could be induced by optogenetic stimulation of mesostriatal dopamine neurons, and could be reversed by the antipsychotic drug haloperidol. These findings reveal a causal role for dopamine-dependent striatal circuits in hallucination-like perception and open new avenues to develop circuit-based treatments for psychotic disorders.


Sign in / Sign up

Export Citation Format

Share Document