scholarly journals Limited phenological and pollinator-mediated isolation among selfing and outcrossing Arabidopsis lyrata populations

2019 ◽  
Author(s):  
Courtney E. Gorman ◽  
Lindsay Bond ◽  
Mark van Kleunen ◽  
Marcel E. Dorken ◽  
Marc Stift

AbstractTransitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are prezygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their F1 hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their F1 hybrids through differences in 1) the timing or intensity of flowering; and/or 2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that prezygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.

2020 ◽  
Vol 287 (1939) ◽  
pp. 20202323
Author(s):  
Courtney E. Gorman ◽  
Lindsay Bond ◽  
Mark van Kleunen ◽  
Marcel E. Dorken ◽  
Marc Stift

Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata .


2020 ◽  
Vol 16 (9) ◽  
pp. 20200402 ◽  
Author(s):  
Courtney E. Gorman ◽  
Christina Steinecke ◽  
Mark van Kleunen ◽  
Marcel E. Dorken ◽  
Marc Stift

An annual life history is often associated with the ability to self-fertilize. However, it is unknown whether the evolution of selfing commonly precedes the evolution of annuality, or vice versa . Using a 2-year common garden experiment, we asked if the evolution of selfing in the normally perennial Arabidopsis lyrata was accompanied by a shift towards the annual habit. Despite their very recent divergence from obligately outcrossing populations, selfing plants exhibited a 39% decrease in over-winter survival after the first year compared with outcrossing plants. Our data ruled out the most obvious underlying mechanism: differences in reproductive investment in the first year did not explain differences in survival. We conclude that transitions to selfing in perennial A. lyrata may be accompanied by a shift towards annuality, but drivers of the process require further investigation.


2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.


2018 ◽  
Vol 425 ◽  
pp. 35-44 ◽  
Author(s):  
Timothy J. Albaugh ◽  
Thomas R. Fox ◽  
Chris A. Maier ◽  
Otávio C. Campoe ◽  
Rafael A. Rubilar ◽  
...  

2019 ◽  
Author(s):  
Joseph A. McGirr ◽  
Christopher H. Martin

AbstractEcological speciation occurs when reproductive isolation evolves as a byproduct of adaptive divergence between populations. However, it is unknown whether divergent ecological selection on gene regulation can directly cause reproductive isolation. Selection favoring regulatory divergence between species could result in gene misregulation in F1 hybrids and ultimately lower hybrid fitness. We combined 58 resequenced genomes with 124 transcriptomes to test this hypothesis in a young, sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas, which consists of a dietary generalist and two novel trophic specialists – a molluscivore and a scale-eater. We found more differential gene expression between closely related sympatric specialists than between allopatric generalist populations separated by 1000 km. Intriguingly, 9.6% of genes that were differentially expressed between sympatric species were also misregulated in their F1 hybrids. Consistent with divergent ecological selection causing misregulation, a subset of these genes were in highly differentiated genomic regions and enriched for functions important for trophic specialization, including head, muscle, and brain development. These regions also included genes that showed evidence of hard selective sweeps and were significantly associated with oral jaw length – the most rapidly diversifying skeletal trait in this radiation. Our results indicate that divergent ecological selection in sympatry can cause hybrid gene misregulation which may act as a primary reproductive barrier between nascent species.SignificanceIt is unknown whether the same genes that regulate ecological traits can simultaneously contribute to reproductive barriers between species. We measured gene expression in two trophic specialist species of Cyprinodon pupfishes that rapidly diverged from a generalist ancestor. We found genes differentially expressed between species that also showed extreme expression levels in their hybrid offspring. Many of these genes showed signs of selection and have putative effects on the development of traits that are important for ecological specialization. This suggests that genetic variants contributing to adaptive trait divergence between parental species negatively interact to cause hybrid gene misregulation, potentially producing unfit hybrids. Such loci may be important barriers to gene flow during the early stages of speciation, even in sympatry.


NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


2017 ◽  
Vol 26 (13) ◽  
pp. 3484-3496 ◽  
Author(s):  
Tuomas Hämälä ◽  
Tiina M. Mattila ◽  
Päivi H. Leinonen ◽  
Helmi Kuittinen ◽  
Outi Savolainen

Botany ◽  
2018 ◽  
Vol 96 (7) ◽  
pp. 425-435 ◽  
Author(s):  
Devin E. Gamble ◽  
Megan Bontrager ◽  
Amy L. Angert

The benefits of self-fertilization can vary across environments, leading to selection for different reproductive strategies and influencing the evolution of floral traits. Although stressful conditions have been suggested to favour self-pollination, the role of climate as a driver of mating-system variation is generally not well understood. Here, we investigate the contributions of local climate to intraspecific differences in mating-system traits in Clarkia pulchella Pursh in a common-garden growth chamber experiment. We also tested for plastic responses to soil moisture with watering treatments. Herkogamy (anther–stigma spacing) correlated positively with dichogamy (timing of anther–stigma receptivity) and date of first flower, and northern populations had smaller petals and flowered earlier in response to experimental drought. Watering treatment alone had little effect on traits, and dichogamy unexpectedly decreased with annual precipitation. Populations also differed in phenological response to watering treatment, based on precipitation and winter temperature of their origin, indicating that populations from cool and dry sites have greater plasticity under different levels of moisture stress. While some variation in floral traits is attributable to climate, further investigation into variation in pollinator communities and the indirect effects of climate on mating system can improve our understanding of the evolution of plant mating.


Sign in / Sign up

Export Citation Format

Share Document