scholarly journals Granular Transcriptomic Signatures Derived from Independent Component Analysis of Bulk Nervous Tissue for Studying Labile Brain Physiologies

2020 ◽  
Author(s):  
Zeid M Rusan ◽  
Michael P Cary ◽  
Roland J Bainton

AbstractMulticellular organisms employ concurrent gene regulatory programs to control development and physiology of cells and tissues. The Drosophila melanogaster model system has a remarkable history of revealing the genes and mechanisms underlying fundamental biology yet much remains unclear. In particular, brain xenobiotic protection and endobiotic regulatory systems that require transcriptional coordination across different cell types, operating in parallel with the primary nervous system and metabolic functions of each cell type, are still poorly understood. Here we use the unsupervised machine learning method independent component analysis (ICA) on majority fresh-frozen, bulk tissue microarrays to define biologically pertinent gene expression signatures which are sparse, i.e. each involving only a fraction of all fly genes. We optimize the gene expression signature definitions partly through repeated application of a stochastic ICA algorithm to a compendium of 3,346 microarrays from 221 experiments provided by the Drosophila research community. Our optimized ICA model of pan fly gene expression consists of 850 modules of co-regulated genes that map to tissue developmental stages, disease states, cell-autonomous pathways and presumably novel processes. Importantly, we show biologically relevant gene modules expressed at varying amplitudes in whole brain and isolated adult blood-brain barrier cell levels. Thus, whole tissue derived ICA transcriptional signatures that transcend single cell type boundaries provide a window into the transcriptional states of difficult to isolate cell ensembles maintaining delicate brain physiologies. We believe the fly ICA gene expression signatures set, by virtue of the success of ICA at inferring robust often low amplitude patterns across large datasets and the quality of the input samples, to be an important asset for analyzing compendium and newly generated microarray or RNA-seq expression datasets.

2021 ◽  
Author(s):  
Weixu Wang ◽  
Huanhuan Tan ◽  
Mingwan Sun ◽  
Yiqing Han ◽  
Wei Chen ◽  
...  

Abstract With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.


Author(s):  
Zhen Miao ◽  
Michael S. Balzer ◽  
Ziyuan Ma ◽  
Hongbo Liu ◽  
Junnan Wu ◽  
...  

AbstractDetermining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response.Here, we profiled open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We define key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrated that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells followed a more complex differentiation, where Hfn4a was associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease identified critical cell types, developmental stages, genes, and regulatory mechanisms.We provide a global single cell resolution view of chromatin accessibility of kidney development. The dataset is available via interactive public websites.


Sign in / Sign up

Export Citation Format

Share Document