gene expression microarrays
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xinke Xu ◽  
Hongyao Yuan ◽  
Junping Pan ◽  
Wei Chen ◽  
Cheng Chen ◽  
...  

Abstract Background: Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant pediatric tumor of the central nervous system (CNS) with high recurrence and low survival rates that is often misdiagnosed. MicroRNAs (miRNAs) are involved in the tumorigenesis of numerous pediatric cancers, but their roles in AT/RT remain unclear.Methods: In this study, we used miRNA sequencing and gene expression microarrays from patient tissue to study both the miRNAome and transcriptome traits of AT/RT.Results: Our findings demonstrate that 5 miRNAs were up-regulated, 16 miRNAs were down-regulated, 179 mRNAs were up-regulated and 402 mRNAs were down-regulated in AT/RT. The expressions of hsa-miR-17-5p and MAP7 mRNA showed the most significant differences in AT/RT tissues as assayed by qPCR, and analyses using the miRTarBase database identified MAP7 mRNA as a target gene of hsa-miR-17-5p. Conclusions: Our findings suggest that the dysregulation of hsa-miR-17-5p may be a pivotal event in AT/RT and MAP7 miRNAs that may represent potential therapeutic targets and diagnostic biomarkers.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 998
Author(s):  
Chao-Lien Liu ◽  
Ray-Hwang Yuan ◽  
Tsui-Lien Mao

Epithelial ovarian cancer (EOC) is one of the major increasing lethal malignancies of the gynecological tract, mostly due to delayed diagnosis and chemoresistance, as well as its very heterogeneous genetic makeup. Application of high-throughput molecular technologies, gene expression microarrays, and powerful preclinical models has provided a deeper understanding of the molecular characteristics of EOC. Therefore, molecular markers have become a potent tool in EOC management, including prediction of aggressiveness, prognosis, and recurrence, and identification of novel therapeutic targets. In addition, biomarkers derived from genomic/epigenomic alterations (e.g., gene mutations, copy number aberrations, and DNA methylation) enable targeted treatment of affected signaling pathways in advanced EOC, thereby improving the effectiveness of traditional treatments. This review outlines the molecular landscape and discusses the impacts of biomarkers on the detection, diagnosis, surveillance, and therapeutic targets of EOC. These findings focus on the necessity to translate these potential biomarkers into clinical practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jia-Wei Lu ◽  
Aimaier Rouzigu ◽  
Li-Hong Teng ◽  
Wei-Li Liu

Ulcerative colitis (UC) is a common disease with great variability in severity, with a high recurrence rate and heavy disease burden. In recent years, the different biological functions of competing endogenous RNA (ceRNA) networks of long noncoding RNAs (lncRNAs) and microRNAs (miRs) have aroused wide concerns, the ceRNA network of ulcerative colitis (UC) may have potential research value, and these expressed noncoding RNAs may be involved in the molecular basis of inflammation recurrence and progression. This study analyzed 490 colon samples associated with UC from 4 gene expression microarrays from the GEO database and identified gene modules by weighted correlation network analysis (WGCNA). CIBERSORT detected tissue-infiltrating leukocyte profiling by deconvolution of microarray data. LncBase and multiMIR were used to identify lncRNA-miRNA-mRNA interaction. We constructed a ceRNA network which includes 4 lncRNAs (SH3BP5-AS1, MIR4435-2HG, ENTPD1-AS1, and AC007750.1), 5 miRNAs (miR-141-3p, miR-191-5p, miR-192-5p, miR-194-5p, and miR196-5p), and 52 mRNAs. Those genes are involved in interleukin family signals, neutrophil degranulation, adaptive immunity, and cell adhesion pathways. lncRNA MIR4435-2HG is a variable in the decision tree for moderate-to-severe UC diagnostic prediction. Our work identifies potential regulated inflammation-related lncRNA-miRNA-mRNA regulatory axes. The regulatory axes are dysregulated during the deterioration of UC, suggesting that it is a risk factor for UC progression.


Author(s):  
Piotr Kaczynski ◽  
Stefan Bauersachs ◽  
Ewelina Goryszewska ◽  
Monika Baryla ◽  
Agnieszka Waclawik

Abstract Successful pregnancy establishment in mammals depends on numerous interactions between embryos and the maternal organism. Estradiol-17β (E2) is the primary embryonic signal in the pig, and its importance has been questioned recently. However, E2 is not the only molecule of embryonic origin. In pigs, prostaglandin E2 (PGE2) is abundantly synthesized and secreted by conceptuses and endometrium. The present study aimed to determine the role of PGE2 and its simultaneous action with E2 in changes in porcine endometrial transcriptome during pregnancy establishment. The effects of PGE2 and PGE2 acting with E2 were studied using an in vivo model of intrauterine hormone infusions, and were compared to the effects of E2 alone and conceptuses’ presence on day 12 of pregnancy. The endometrial transcriptome was profiled using gene expression microarrays followed by statistical analyses. Downstream analyses were performed using bioinformatics tools. Differential expression of selected genes was verified by quantitative PCR. Microarray analysis revealed 2413 differentially expressed genes (DEGs) in the endometrium treated simultaneously with PGE2 and E2 (P < 0.01). No significant effect of PGE2 administered alone on endometrial transcriptome was detected. Gene ontology annotations enriched for DEGs were related to multiple processes such as: focal adhesion, vascularization, cell migration and proliferation, glucose metabolism, tissue remodeling, and activation of immune response. Simultaneous administration of E2 and PGE2 induced more changes within endometrial transcriptome characteristic to pregnancy than infusion of E2 alone. The present findings suggest that synergistic action of estradiol-17β and PGE2 resembles the effects of pregnancy on endometrial transcriptome better than E2 alone.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2164
Author(s):  
Carolina Nylén ◽  
Robert Mechera ◽  
Isabella Maréchal-Ross ◽  
Venessa Tsang ◽  
Angela Chou ◽  
...  

The incidence of thyroid cancer is rapidly increasing, mostly due to the overdiagnosis and overtreatment of differentiated thyroid cancer (TC). The increasing use of potent preclinical models, high throughput molecular technologies, and gene expression microarrays have provided a deeper understanding of molecular characteristics in cancer. Hence, molecular markers have become a potent tool also in TC management to distinguish benign from malignant lesions, predict aggressive biology, prognosis, recurrence, as well as for identification of novel therapeutic targets. In differentiated TC, molecular markers are mainly used as an adjunct to guide management of indeterminate nodules on fine needle aspiration biopsies. In contrast, in advanced thyroid cancer, molecular markers enable targeted treatments of affected signalling pathways. Identification of the driver mutation of targetable kinases in advanced TC can select treatment with mutation targeted tyrosine kinase inhibitors (TKI) to slow growth and reverse adverse effects of the mutations, when traditional treatments fail. This review will outline the molecular landscape and discuss the impact of molecular markers on diagnosis, surveillance and treatment of differentiated, poorly differentiated and anaplastic follicular TC.


2020 ◽  
Author(s):  
Denis Delic ◽  
Frank Wunderlich ◽  
Saleh Al-Quraishy ◽  
Abdel-Azeem S. Abdel-Baki ◽  
Mohamed A. Dkhil ◽  
...  

Abstract Background: Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi. Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver. Methods: Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 106 P. chabaudi-parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi-infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i. Results: Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd, Rhag, Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1, Ahsp, Acyp1, Gata1, Gfi1b, Tal1, Klf1, Epor, and Cldn13. In vaccination-protected mice, expression of these genes, except Epb4.1, is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i., before declining towards the end of crisis phase on day 11 p.i. Conclusion: The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1-2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi.


2020 ◽  
Author(s):  
Denis Delic ◽  
Frank Wunderlich ◽  
Saleh Al-Quraishy ◽  
Abdel-Azeem S. Abdel-Baki ◽  
Mohamed A. Dkhil ◽  
...  

Abstract Background Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi . Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver. Methods Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 10 6 P. chabaudi- parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi -infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i. . Results Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i.. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd , Rhag , Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1 , Ahsp, Acyp1 , Gata1, Gfi1b, Tal1, Klf1, Epor , and Cldn13 . In vaccination-protected mice, expression of these genes, except Epb4.1 , is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i. , before declining towards the end of crisis phase on day 11 p.i. . Conclusion The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1-2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi .


2019 ◽  
Author(s):  
Denis Delic ◽  
Frank Wunderlich ◽  
Saleh Al-Quraishy ◽  
Abdel-Azeem Abdel-Baki ◽  
Mohamed Dkhil ◽  
...  

Abstract Background: Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi. Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver. Methods: Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 106 P. chabaudi-parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi-infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i.. Results: Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i.. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd, Rhag, Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1, Ahsp, Acyp1, Gata1, Gfi1b, Tal1, Klf1, Epor, and Cldn13. In vaccination-protected mice, expression of these genes, except Epb4.1, is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i., before declining towards the end of crisis phase on day 11 p.i.. Conclusion: The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1-2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi.


2019 ◽  
Vol 316 (5) ◽  
pp. F914-F933 ◽  
Author(s):  
Sofia Jönsson ◽  
Mediha Becirovic-Agic ◽  
Henrik Isackson ◽  
Maria K. Tveitarås ◽  
Trude Skogstrand ◽  
...  

Balb/CJ mice are more sensitive to treatment with angiotensin II (ANG II) and high-salt diet compared with C57BL/6J mice. Together with higher mortality, they develop edema, signs of heart failure, and acute kidney injury. The aim of the present study was to identify differences in renal gene regulation that may affect kidney function and fluid balance, which could contribute to decompensation in Balb/CJ mice after ANG II + salt treatment. Male Balb/CJ and C57BL/6J mice were divided into the following five different treatment groups: control, ANG II, salt, ANG II + salt, and ANG II + salt + N-acetylcysteine. Gene expression microarrays were used to explore differential gene expression after treatment and between the strains. Published data from the Mouse Genome Database were used to identify the associated genomic differences. The glomerular filtration rate (GFR) was measured using inulin clearance, and fluid balance was measured using metabolic cages. Gene ontology enrichment analysis of gene expression microarrays identified glutathione transferase (antioxidant system) as highly enriched among differentially expressed genes. Balb/CJ mice had similar GFR compared with C57BL/6J mice but excreted less Na+ and water, although net fluid and electrolyte balance did not differ, suggesting that Balb/CJ mice may be inherently more prone to decompensation. Interestingly, C57BL/6J mice had higher urinary oxidative stress despite their relative protection from decompensation. In addition, treatment with the antioxidant N-acetylcysteine decreased oxidative stress in C57BL/6J mice, reduced urine excretion, and increased mortality. Balb/CJ mice are more sensitive than C57BL/6J to ANG II + salt, in part mediated by lower oxidative stress, which favors fluid and Na+ retention.


Sign in / Sign up

Export Citation Format

Share Document