scholarly journals A poor substitute for the real thing: captive-reared monarch butterflies are weaker, paler and have less elongated wings than wild migrants

2020 ◽  
Vol 16 (4) ◽  
pp. 20190922 ◽  
Author(s):  
Andrew K. Davis ◽  
Farran M. Smith ◽  
Ashley M. Ballew

For many animals and insects that are experiencing dramatic population declines, the only recourse for conservationists is captive rearing. To ensure success, reared individuals should be biologically indistinct from those in the wild. We tested if this is true with monarch butterflies, Danaus plexippus , which are increasingly being reared for release by citizens and commercial breeders. Since late-summer monarchs should be as migration capable as possible for surviving the arduous long-distance migration, we evaluated four migration-relevant traits across two groups of captive-reared monarchs ( n = 41 and 42) and one group of wild-caught migrants ( n = 41). Monarchs (descendants of wild individuals) were reared from eggs to adulthood either in a warm indoor room next to a window, or in an incubator that mimicked late-summer conditions. Using an apparatus consisting of a perch mounted to an electronic force gauge, we assessed ‘grip strength' of all groups, then used image analysis to measure forewing size, pigmentation and elongation. In three of the four traits, reared monarchs underperformed compared to wild ones, even those reared under conditions that should have produced migration-ready individuals. The average strength of reared monarchs combined was 56% less than the wild group, even when accounting for size. Their orange wing colour was paler (an indicator of poor condition and flight ability) and their forewings were less elongated (elongation is associated with migration propensity) than wild monarchs. The reason(s) behind these effects is unknown but could stem from the frequent disturbance and/or handling of reared monarchs, or the fact that rearing removes the element of natural selection from all stages. Regardless, these results explain prior tagging studies that showed reared monarchs have lower migratory success compared to wild.

2020 ◽  
Vol 224 (4) ◽  
pp. jeb230870
Author(s):  
Alana A. E. Wilcox ◽  
Amy E. M. Newman ◽  
Nigel E. Raine ◽  
Greg W. Mitchell ◽  
D. Ryan Norris

ABSTRACTMigratory insects use a variety of innate mechanisms to determine their orientation and maintain correct bearing. For long-distance migrants, such as the monarch butterfly (Danaus plexippus), these journeys could be affected by exposure to environmental contaminants. Neonicotinoids are synthetic insecticides that work by affecting the nervous system of insects, resulting in impairment of their mobility, cognitive performance, and other physiological and behavioural functions. To examine how neonicotinoids might affect the ability of monarch butterflies to maintain a proper directional orientation on their ∼4000 km migration, we grew swamp milkweed (Asclepias incarnata) in soil that was either untreated (0 ng g−1: control) or mixed with low (15 ng g−1 of soil) or high (25 ng g−1 of soil) levels of the neonicotinoid clothianidin. Monarch caterpillars were raised on control or clothianidin-treated milkweed and, after pupation, either tested for orientation in a static flight simulator or radio-tracked in the wild during the autumn migration period. Despite clothianidin being detectable in milkweed tissue consumed by caterpillars, there was no evidence that clothianidin influenced the orientation, vector strength (i.e. concentration of direction data around the mean) or rate of travel of adult butterflies, nor was there evidence that morphological traits (i.e. mass and forewing length), testing time, wind speed or temperature impacted directionality. Although sample sizes for both flight simulator and radio-tracking tests were limited, our preliminary results suggest that clothianidin exposure during early caterpillar development does not affect the directed flight of adult migratory monarch butterflies or influence their orientation at the beginning of migration.


2013 ◽  
Vol 280 (1768) ◽  
pp. 20131087 ◽  
Author(s):  
D. T. Tyler Flockhart ◽  
Leonard I. Wassenaar ◽  
Tara G. Martin ◽  
Keith A. Hobson ◽  
Michael B. Wunder ◽  
...  

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies ( Danaus plexippus ) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km 2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.


2020 ◽  
Author(s):  
Alana A. E. Wilcox ◽  
Amy E. M. Newman ◽  
Nigel E. Raine ◽  
D. Ryan Norris

AbstractEastern North American migratory monarch butterflies (Danaus plexippus) have faced sharp declines over the last two decades. Although captive rearing has been used as an important tool for engaging the public and supplementing conservation efforts, a recent study that tested monarchs in a flight simulator suggested that captive-reared monarchs lose their capacity to orient southward during fall migration to their Mexican overwintering sites. We raised offspring of wild-caught monarchs on swamp milkweed (Asclepias incarnata) and, after eclosion, individuals were either tested in a flight simulator or radio-tracked in the wild using array of over 100 automated telemetry towers. While only 33% (7/39) of monarchs tested in the flight simulator showed strong southeast to southwest orientation, 97% (28/29) of the radio-tracked individuals were detected by automated towers south or southeast of the release site, up to 200 km away. Our results suggest that, though captive rearing of monarch butterflies may cause temporary disorientation, proper orientation is likely re-established after exposure to natural skylight cues.


FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 238-253
Author(s):  
D. T. Tyler Flockhart ◽  
Maxim Larrivée ◽  
Kathleen L. Prudic ◽  
D. Ryan Norris

Monarch butterflies ( Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Dara A. Satterfield ◽  
Andrew K. Davis

AbstractThe migration of monarch butterflies (Danaus plexippus) in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width), and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010), results showed that the earliest migrants (n = 20) in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17). There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind


2020 ◽  
Author(s):  
Myriam Franzke ◽  
Christian Kraus ◽  
David Dreyer ◽  
Keram Pfeiffer ◽  
M. Jerome Beetz ◽  
...  

AbstractMonarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to its overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Here we studied if non-migrating butterflies - that stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies register both cues in their compass. Taken together, we here show that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.SummaryNon-migrating butterflies keep directed courses when viewing a simulated sun or panoramic scene. This suggest that they orient based on multiple visual cues independent of their migratory context.


2020 ◽  
Author(s):  
Patrick Anthony Guerra ◽  
Stephen Matter

Abstract BackgroundIndividuals of many species that perform annual long-distance migrations are capable of stopping at specific overwintering destinations, despite having not been there before. The iconic monarch butterfly (Danaus plexippus) and its annual long-distance fall migration is a famous example of this phenomenon. During the fall, Eastern North American monarch butterflies use various compass mechanisms to properly orient their flight southwards, in order to leave their summer breeding grounds in Southern Canada and the Northern United States, and reach their overwintering sites in Central Mexico. It remains a mystery, however, how monarchs locate and stop at these specific, consistent overwintering sites, especially since these individuals are on their maiden voyage. MethodsWe test the hypothesis that fall migrant monarchs locate these overwintering sites by using an innate, inherited map sense based on sensing and responding to specific geomagnetic signatures that are correlated with the overwintering sites. Using a natural displacement approach, we examined if the locations of overwintering sites and the abundance of monarchs at them, changes with the natural shift of the Earth’s magnetic field over time (2004-2018).ResultsWe found that despite the natural displacement of the geomagnetic field over the years, the locations of the overwintering sites and monarch abundance were unaffected. For example, fall monarchs continued to overwinter at the most southern sites in Mexico, even when the geomagnetic coordinates associated with these sites would have shifted north due to the natural shift of the Earth’s magnetic field, placing these sites significantly outside the range of the overwintering area.ConclusionsOur results suggest that monarchs do not employ a map sense based on geomagnetic cues for finding their overwintering sites, and might instead use other mechanisms or strategies for locating them (potentially using localized sensory cues) once they are near or have arrived in Central Mexico. We suggest that future work should now focus on understanding what these cue parameters are, in order to inform conservation efforts that are aimed at protecting the threatened monarch butterfly and preserving its annual long-distance migration.


1941 ◽  
Vol 73 (2) ◽  
pp. 21-22 ◽  
Author(s):  
F. A. Urquhart

In the late summer of 1940, there was a decided peak in the abundance of the monarch butterfly, Danaus plexippus L. Numerous reports were received by the Royal Ontario Museum of Zoology, and a personal investigation proved the abundance of the species; trees bordering the north shore of Lake Ontario in the vicinity of Toronto were literally covered with monarch butterflies.


Sign in / Sign up

Export Citation Format

Share Document